Cho tam giac ABC vuong tai A( AB< AC ) co duong cao AD va duong trung tuyen CE....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔACE vuông tại A có AF là đường cao ứng với cạnh huyền CE, ta được:

\(CF\cdot CE=CA^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AD là đường cao ứng với cạnh huyền BC, ta được:

\(CD\cdot CB=CA^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(CF\cdot CE=CD\cdot CB\)

9 tháng 11 2019
https://i.imgur.com/LuwOJwZ.jpg
9 tháng 11 2019

Nguyễn Ngọc LinhNguyễn Thị Diễm QuỳnhAki TsukiIchigoLê Ngọc KhôiPhạm Lan HươngtthVũ Minh TuấnMinh AnBăng Băng 2k6Lê Thị Thục HiềnNguyễn Lê Phước ThịnhNo choice teenHISINOMA KINIMADOAkai HarumaNguyễn Huy ThắngNguyễn Thanh HằngHồng Phúc NguyễnPhương AnMysterious Person

2 tháng 12 2015

c. Bạn C/m Tam Giác HOF- Tam giác KOA đồng dạng

=>OH/OK=OF/OA

=>OK.OF= OH.OA=OB^2=OD^2

=>OK/OD=OD/OF

=> Tam giác ODK và Tam giác OFD đồng dạng

=>Tam giác ODF vuông tại D

=>FD la tiếp tuyến của (O) (đpcm)

d. EI=BI=IA (IE la trung tuyến của tam giác vuông ABE)

=>góc IEB=góc IBE; Cmtt ta có góc FDE = góc FED

mà (góc IBE+ góc FDE)= 90 nên (góc IEB+góc FED)=90

=> F,E,I thẳng hàng

Ta có BINF là hình bình hành nên  FN=BI=IA => IANF la hbh 

=> AN=IF=IE+EF=IB+DF=FN+DF=DN (đpcm)

 

Bài 2:

a: AB/3=AC/4=k

=>AB=3k; AC=4k

Ta có: \(AB^2+AC^2=BC^2\)

=>\(25k^2=100\)

=>k=2

=>AB=6cm; AC=8cm

b: Xét ΔBAC có BM là phân giác

nên MA/AB=MC/BC

=>MA/3=MC/5

Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:

\(\dfrac{MA}{3}=\dfrac{MC}{5}=\dfrac{8}{8}=1\)

=>MA=3cm

8 tháng 10 2017

a) theo hệ thức về cạnh và đường cao trong tam giác vuông có:

AH^2=BH*HC

hay AH^2=4*9

AH^2=36

=>AH=6cm

ADHE có gócD=gócA=gócE=90độ

=>ADHE là hình chữ nhật

=>AH=DE=6cm (2 đường chéo của hcn)