Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Bạn tự vẽ hình nhé.
a) Ta thấy \(\widehat{MFC}=90^0-\widehat{MAF}(1)\)
VÌ $AM$ là trung tuyến ứng với cạnh huyền nên \(AM=\frac{BC}{2}=BM=MC\)
\(\Rightarrow \triangle AMB\) cân tại $M$
\(\Rightarrow \widehat{MBE}=\widehat{MBA}=\widehat{MAB}=90^0-\widehat{MAF}(2)\)
Từ \((1);(2)\Rightarrow \widehat{MFC}=\widehat{MBE}\)
Xét tam giác $MBE$ và $MFC$ có:
\(\left\{\begin{matrix} \widehat{MBE}=\widehat{MFC}\\ \widehat{BME}=\widehat{FMC}(\text{đối đỉnh})\end{matrix}\right.\) \(\Rightarrow \triangle MBE\sim \triangle MFC(g.g)\)
b) Theo phần a thì \(\widehat{MBE}=\widehat{MFC}\Leftrightarrow \widehat{ABC}=\widehat{AFE}\)
Xét tam giác $ABC$ và $AFE$ có:
\(\left\{\begin{matrix} \widehat{ABC}=\widehat{AFE}\\ \text{chung góc A}\end{matrix}\right.\Rightarrow \triangle ABC\sim \triangle AFE(g.g)\)
\(\Rightarrow \frac{AB}{AF}=\frac{AC}{AE}\Rightarrow AB.AE=AC.AF\)
c)
Do $AH,AM$ là hai đường cao tương ứng đỉnh $A$ của hai tam giác đồng dạng $ABC$ và $AFE$ nên \(\frac{AH}{AM}=\frac{AB}{AF}=\frac{AC}{AE}\)
Do đó \(\frac{S_{ABC}}{S_{AEF}}=\frac{\frac{AB.AC}{2}}{\frac{AE.AF}{2}}=\frac{AB}{AF}.\frac{AC}{AE}=\left(\frac{AH}{AM}\right)^2(*)\)
Xét tam giác $AMI$ và $AHM$ có:
\(\left\{\begin{matrix} \text{chung góc A}\\ \widehat{AMI}=\widehat{AHM}=90^0\end{matrix}\right.\Rightarrow \triangle AMI\sim \triangle AHM(g.g)\)
\(\Rightarrow \frac{AM}{AI}=\frac{AH}{AM}(**)\)
Từ \((*);(**)\Rightarrow \frac{S_{ABC}}{S_{AEF}}=\left(\frac{AM}{AI}\right)^2\) (đpcm)
A B C E F I M
a/ Xét tg vuông ABC có
BM=CM (gt) => AM=BM=CM=BC/2 (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)
=> tg ABM cân tại M => \(\widehat{BAM}=\widehat{ABM}\) (góc ở đáy tg cân)
b/ Xét tg vuông AEF và tg vuông AFM có
\(\widehat{AEF}=\widehat{FAM}\) (cùng phụ với \(\widehat{AFE}\) ) (1)
Mà AM=CM (cmt) => tg MAC cân tại M => \(\widehat{FAM}=\widehat{ACB}\) (góc ở đáy th cân) (2)
Từ (1) và (2) \(\Rightarrow\widehat{ACB}=\widehat{AEF}\)
Xét tg MBE và tg MFC có
\(\widehat{AEF}=\widehat{ACB}\) (cmt)
\(\widehat{BME}=\widehat{CMF}\) (góc đối đỉnh)
=> tg MBE đồng dạng với tg MFC (g.g.g)
c/ Xét tg vuông ABC và tg vuông AFE có
\(\widehat{AEF}=\widehat{ACB}\) (cmt)
=> tg ABC đông dạng với tg AFE
\(\Rightarrow\dfrac{AB}{AF}=\dfrac{AC}{AE}\Rightarrow AB.AE=AC.AF\)
d/
a: ΔABC vuông tại A
mà AM là trung tuyến
nên AM=MB=MC
=>góc MBA=góc MAB
b: góc AEF=90 độ-góc EAM=90 độ-góc B
=>gócAEF=góc ACB
c: Xét ΔAFE vuông tại A và ΔABC vuông tại A có
góc AEF=góc ACB
=>ΔAFE đồng dạng với ΔABC
=>AF/AB=AE/AC
=>AF*AC=AB*AE