K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2020

A B C M N x 36-x

Áp dụng định lí Py-ta-go ta tính được BC = 60

Đặt AM = x thì BM = 36 - x

Vì MN // BC \(\Rightarrow\frac{MN}{60}=\frac{x}{36}\Rightarrow MN=\frac{60x}{36}\)

Ta có : \(\frac{CN}{CA}=\frac{BM}{BA}\Rightarrow CN=\frac{AC.BM}{AB}=\frac{48\left(36-x\right)}{36}\)

\(\Rightarrow\frac{60x}{36}=\left(36-x\right)+\frac{48\left(36-x\right)}{36}\Leftrightarrow x=21\)

Suy ra MN = 35

a: Xét ΔCAB có CM/CA=CN/CB

nênMN//AB

b: Xét ΔCAB có MN//AB

nên MN/AB=CM/CA

=>MN/6=1/4

=>MN=1,5cm

c: góc CMD=góc CHD=90 độ

=>CMHD nội tiếp

=>góc AMH=góc ADC

Xét ΔAMH và ΔADC có

góc AMH=góc ADC

góc A chung

=>ΔAMH đồng dạng với ΔADC

21 tháng 10 2019

Do M nằm giữa A và B nên: AB = AM + MB = 13 + 11 = 24 cm

Theo hệ quả định lí Ta let ta có:

Bài tập: Định lí đảo và hệ quả của định lí Ta-lét | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án C

a) Xét ΔABC có 

MN//BC(gt)

Do đó: \(\dfrac{AM}{MB}=\dfrac{AN}{NC}\)(Định lí Ta lét)

Suy ra: \(\dfrac{6}{4}=\dfrac{8}{NC}\)

hay \(NC=\dfrac{16}{3}cm\)

Ta có: AM+MB=AB(M nằm giữa A và B)

nên AB=6+4=10(cm)

Ta có: AN+NC=AC(N nằm giữa A và C)

nên \(AC=8+\dfrac{16}{3}=\dfrac{40}{3}cm\)

Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=10^2+\left(\dfrac{40}{3}\right)^2=\dfrac{2500}{9}\)

hay \(BC=\dfrac{50}{3}cm\)

Xét ΔABC có 

MN//BC(gt)

nên \(\dfrac{MN}{BC}=\dfrac{AM}{AB}\)(Hệ quả của Định lí Ta lét)

\(\Leftrightarrow\dfrac{MN}{\dfrac{50}{3}}=\dfrac{6}{10}\)

\(\Leftrightarrow MN=\dfrac{6\cdot\dfrac{50}{3}}{10}=\dfrac{100}{10}=10cm\)

Vậy: MN=10cm; \(NC=\dfrac{16}{3}cm\)\(BC=\dfrac{50}{3}cm\)

3:

Xét tứ giác AEHF có

góc AEH=góc AFH=góc EAF=90 độ

=>AEHF là hình chữ nhật

AM vuông góc EF

=>góc MAC+góc AFE=90 độ

=>góc MAC+góc AHE=90 độ

=>góc MAC+góc B=90 độ

mà góc MCA+góc B=90 độ

nên góc MAC=góc MCA

=>MA=MC

góc MAC+góc MAB=90 độ

góc MCA+góc MBA=90 độ

mà góc MAC=góc MCA

nên góc MAB=góc MBA

=>MA=MB

=>MB=MC

=>M là trung điểm của BC

16 tháng 12 2019

a

Do \(MN//BC\) nên theo định lý Thales ta có:\(\frac{AN}{NC}=\frac{AM}{MB}=\frac{MN}{BC}\)

\(\Rightarrow\frac{8}{NC}=\frac{3}{2}\Rightarrow NC=\frac{16}{3}\)

Áp dụng định Pythagoras ta có:\(AM^2+AN^2=MN^2\Rightarrow MN=\sqrt{AM^2+AN^2}=10\)

Mà \(\frac{AM}{MB}=\frac{MN}{BC}\Rightarrow\frac{3}{2}=\frac{10}{BC}\Rightarrow BC=\frac{20}{3}\)

b

Hạ \(NH\perp BC;MG\perp BC\)

Áp dụng định lý Pythagoras vào tam giác ABC ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow AB^2=\sqrt{BC^2-AC^2}\Rightarrow AB=\sqrt{10-\left(\frac{16}{3}\right)^2-8^2}=\frac{2\sqrt{17}}{3}\)

Bạn áp dụng định lý Ta Lét ( do ND//AB ) rồi tính được ND

Diện tích tam giác vuông NCD sẽ tính bằng \(\frac{NC\cdot ND}{2}\) ( do đã biết được ND và NC )

Lại có \(S_{NCD}=\frac{NH\cdot CD}{2}\) rồi tính được NH.

Do NH=MG nên tính được diện tích hình bình hành BMND.Hướng là thế đấy,bạn làm tiếp nha,mik nhác quá:( 

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC

a, Tứ giác BMNC là hình gì ?

b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?

c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .

d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông

2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E

a, Chứng minh tam giác BME cân

b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?

c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng

d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng

 

1

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành