K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

\(\Delta ABC\left(\widehat{A}=90^0\right)\)

\(BC^2=AB^2+AC^2\)

\(BC^2=\left(3\sqrt{3}\right)^2+\left(2\sqrt{5}\right)^2=47\)

\(\Rightarrow BC=\sqrt{47}\left(cm\right)\)

\(\sin\widehat{C}=\frac{3\sqrt{3}}{\sqrt{47}}\Rightarrow\widehat{C}\approx55^0\)

\(\widehat{B}=90^0-\widehat{C}\)(2 góc phụ nhau)

\(\widehat{B}=90^0-55^0=35^0\)

Chúc bạn học tốt.

12 tháng 7 2017

cảm ơn bạn 

d) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=\left(a\sqrt{3}\right)^2+a^2=4a^2\)

hay BC=2a

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{a}{2a}=\dfrac{1}{2}\)

\(\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{a\sqrt{3}}{2a}=\dfrac{\sqrt{3}}{2}\)

\(\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{a}{a\sqrt{3}}=\dfrac{\sqrt{3}}{3}\)

\(\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\)

14 tháng 9 2023

Bài 3:

Ta có:

\(\widehat{M}+\widehat{N}+\widehat{P}=180^o\)

\(\Rightarrow\widehat{P}=180^o-90^o-37^o=53^o\)  

Mà: \(sinN=\dfrac{MN}{NP}\)

\(\Rightarrow sin37^o=\dfrac{MN}{25}\)

\(\Rightarrow MN=25\cdot sin37^o\approx15\left(cm\right)\)

Áp dung định lý Py-ta-go ta có:

\(MP=\sqrt{NP^2-MN^2}=\sqrt{25^2-15^2}=20\left(cm\right)\)

3:

a: Xét ΔABC có AC^2=BA^2+BC^2

nên ΔBAC vuông tại B

b: Xét ΔBAC vuông tại B có

sin A=BC/AC=42/58=21/29

cos A=AB/AC=40/58=20/29

tan A=BC/BA=21/20

cot A=BA/BC=20/21

c: Xét ΔABC vuông tại B có BH là đường cao

nên BH*AC=BA*BC; BA^2=AH*AC; CB^2=CH*CA

=>BH*58=40*42=1680

=>BH=840/29(cm)

BA^2=AH*AC

=>AH=BA^2/AC=40^2/58=800/29cm

CB^2=CH*CA

=>CH=CB^2/CA=42^2/58=882/29(cm)

ΔBHA vuông tại H có HE là đường cao

nênBE*BA=BH^2

=>BE*40=(840/29)^2

=>BE=17640/841(cm)

ΔBHC vuông tại H có HF là đường cao

nênBF*BC=BH^2

=>BF*42=(840/29)^2

=>BF=16800/841(cm)

Xét tứ giác BEHF có

góc BEH=góc BFH=góc EBF=90 độ

=>BEHF là hình chữ nhật

=>góc BFE=góc BHE(=1/2*sđ cung BE)

=>góc BFE=góc BAC

Xét ΔBFE và ΔBAC có

góc BFE=góc BAC

góc FBE chung

Do đó: ΔBFE đồng dạng với ΔBAC
=>S BFE/S BAC=(BF/BA)^2=(16800/441:40)^2=(420/841)^2

=>S AECF=S ABC*(1-(420/841)^2)

=>\(S_{AECF}=\dfrac{1}{2}\cdot40\cdot42\cdot\left[1-\left(\dfrac{420}{841}\right)^2\right]\simeq630,5\left(cm^2\right)\)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)

hay AC=4(cm)

Vậy: AC=4cm

b) Xét ΔABC có AE là tia phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{BE}{3}=\dfrac{CE}{4}\)

mà BE+CE=BC=5cm(gt)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BE}{3}=\dfrac{CE}{4}=\dfrac{BE+CE}{3+4}=\dfrac{BC}{7}=\dfrac{5}{7}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BE}{3}=\dfrac{5}{7}\\\dfrac{CE}{4}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BE=\dfrac{15}{7}\left(cm\right)\\CE=\dfrac{20}{7}\left(cm\right)\end{matrix}\right.\)
Vậy: \(BE=\dfrac{15}{7}cm;CE=\dfrac{20}{7}cm\)

2: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(BH\cdot BC=AB^2\left(1\right)\)

Xét ΔBDC vuông tại B có BA là đường cao ứng với cạnh huyền DC

nên \(AD\cdot AC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BC=AD\cdot AC\)

21 tháng 4 2018

Tương tự HS tự làm

16 tháng 10 2021

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=6(cm)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{1}{2}\)

\(\Leftrightarrow\widehat{C}=30^0\)

hay \(\widehat{B}=60^0\)

11 tháng 11 2021

Câu 15:

a: ĐKXĐ: x>=0; x<>1

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)