\(DE\perp AB\) và
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

A B C H D E F

a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Xét tam giác ABC có AD là đường phân giác trong của tam giác ABC (gt)

\(\Rightarrow\frac{BD}{DC}=\frac{AB}{AC}\left(tc\right)\)

\(\Rightarrow\frac{BD}{DC}=\frac{3}{4}\)

\(\Rightarrow\frac{BD}{3}=\frac{DC}{4}=\frac{BD+DC}{3+4}\frac{10}{7}\)(tính chất của dãy tỉ số bằng nhau )

\(\Rightarrow\hept{\begin{cases}BD=\frac{10}{7}.3=\frac{30}{7}\left(cm\right)\\DC=\frac{10}{7}.4=\frac{40}{7}\left(cm\right)\end{cases}}\)

b)Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)

\(\Rightarrow AB.AC=AH.BC\left(đpcm\right)\)

c) Xét tam giác ADB có DE là đường phân giác trong của tam giác ADB(gt)

\(\Rightarrow\frac{EA}{EB}=\frac{AD}{BD}\left(tc\right)\)

Xét tam giác ADC có DF là đường phân giác trong của tam giác ADC (gt)

\(\Rightarrow\frac{FC}{FA}=\frac{DC}{DA}\left(tc\right)\)

\(\Rightarrow\frac{EA}{EB}.\frac{DB}{DC}.\frac{FC}{FA}=\frac{AD}{BD}.\frac{DB}{DC}.\frac{DC}{DA}=1\left(đpcm\right)\)

20 tháng 4 2018

Vì DE la dg pg cua goc ADB (gt)

=.>AD/DB= AE/EB (h chat dg pg trong tam giac)   (1)

Vi DF la dg pg cua goc ADC (gt)

=>FC/FA=ĐC/ĐÁ ( tính chất đg pg trong tam giác)   (2)

tu (1) va (2) suy ra:EA/EB.FC/FA.DB.DC=AD/DB.DB/DC.DC/DA=1   (dpcm)

1 tháng 5 2018

Vì DE la dg pg cua goc ADB (gt)

=.>AD/DB= AE/EB (h chat dg pg trong tam giac)   (1)

Vi DF la dg pg cua goc ADC (gt)

=>FC/FA=ĐC/ĐÁ ( tính chất đg pg trong tam giác)   (2)

tu (1) va (2) suy ra:EA/EB.FC/FA.DB.DC=AD/DB.DB/DC.DC/DA=1   (dpcm)

7 tháng 2 2020

Áp dụng tính chất đường phân giác vào tam giác ADB có:

\(\frac{AD}{AE}=\frac{BD}{BE}\Rightarrow AD.BE=AE.BD\)

Tương tự: \(AD.CF=DC.AF\)

Từ đó có điều CM:

22 tháng 2 2020

hình bạn tự vẽ nha

a) Xét tam giác ABB' và tg HBC' có

góc AB'B= HC'B

và góc ABB' chung

=> tg ABB' đồng dạng với tg HBC'(g-g)

=> BH/AB = BC'/BB'

=> BH.BB'=BC'.BA

Tương tự CB'.CA=CH.CC'

và BH.BB'=BA'.BC (1)

và CH.CC'=CA'.BC(2)

cộng 1 và 2 => BH.BB'+CH.CC'=BC2

nên BC'.BA+CB'.CA=BC2

3 tháng 8 2016

Bài 1:

Gọi chiều dài là x,gọi chiều rộng là y

Vì chiều rộng kém chiều dài 20cm ta có: x-20=y hay x-y=20  (1)

Vì chu vi hình chữ nhật là 72, ta có: (x+y).2=72 => x+y=36   (2)

Từ (1)(2) ta có:\(\begin{cases}x-y=20\\x+y=36\end{cases}\) \(\Leftrightarrow\begin{cases}x=20+y\\20+y+y=36\end{cases}\)

\(\Leftrightarrow\begin{cases}x=20+y\\2y=16\end{cases}\) \(\Leftrightarrow\begin{cases}x=20+y\\y=8\end{cases}\) \(\Leftrightarrow\begin{cases}x=28\\y=8\end{cases}\)

Diện tịhs hình chữ nhật là: x.y=28.8=224

  

 

3 tháng 8 2016

Bài 2

Xét ΔHAB và ΔACB có:

    \(\widehat{AHB}=\widehat{BAC}=90\)

   \(\widehat{B}\) : góc chung

=>ΔHAB~ΔACB(g.g)

b) Xét ΔABC vuông tại A(gt)

=>\(BC^2=AB^2+AC^2\) (theo định lý pytago)

=>\(BC^2=12^2+16^2=400\)

=>BC=20cm

Vì ΔHAB~ΔACB(cmt)

=>\(\frac{AH}{AC}=\frac{AB}{BC}\)

=>\(AH=\frac{AB\cdot AC}{BC}=\frac{12\cdot16}{20}=9,6cm\)

19 tháng 5 2019

bạn tự vẽ hinh nha

1)

Xét tam giác ABC có

hai đường cao BE và CD cắt nhau tại H nên H là trực tâm

do đó \(AH\perp BC\)

mà \(HM\perp BC\)

suy ra AH trùng với HM 

vậy A; H; M thẳng hàng

b) 

dễ chứng minh tam giác BHM đồng dạng với tam giác BCE \(\Rightarrow\frac{BH}{BC}=\frac{BM}{BE}\Rightarrow BH\cdot BE=BC\cdot BM\left(1\right)\)

dễ chứng minh tam giác CHM đồng dạng với tam giác CBD \(\Rightarrow\frac{CH}{BC}=\frac{CM}{CD}\Rightarrow CH\cdot CD=CM\cdot BC\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BE+CH\cdot CD=BM\cdot BC+CM\cdot BC=\left(BM+CM\right)\cdot BC=BC\cdot BC=BC^2\)

2)

a)

Xét tam giác ABC và tam giác DEC

có \(\widehat{BAC}=\widehat{CDE}\)

\(\widehat{ACB}\)chung

nên tam giác ABC đồng dạng với tam giác DEC

\(\Rightarrow\frac{AB}{DE}=\frac{AC}{CD}\left(1\right)\)

b)

Xét tam giác ABC

có AD là đường phân giác

\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\Rightarrow\frac{AB}{BD}=\frac{AC}{CD}\left(2\right)\)

Từ (1) và (2) suy ra

\(\frac{AB}{DE}=\frac{AB}{BD}\Rightarrow DE=BD\)