K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2016

Theo hình thì CA sẽ là đường vuông góc

=> CP, CB là đường xiên của đường chiếu BP và PA

Mà CB > Cp

=> BP > PA ( híc ko biết có đúng ko nữa)

19 tháng 5 2018

A C B D E F

28 tháng 6 2019

A B C D E F I 1 2 1

Cm: a) Xét t/giác ADB và t/giác EDB

có \(\widehat{BAD}=\widehat{BED}=90^0\)(gt)

      BD : chung

    \(\widehat{B_1}=\widehat{B_2}\)(gt)

=> t/giác ADB = t/giác EDB (ch - gn)

=> AB = BE ; AD = ED (các cặp cạnh t/ứng)

+) AD = ED => D thuộc đường trung trực của AE

+) AB = BE => B thuộc đường trung trực của AE

mà D \(\ne\)B => DB là đường trung trực của AE
=> DB \(\perp\)AE 

b) Xét t/giác ADF và t/giác EDC

có:  \(\widehat{A_1}=\widehat{DEC}=90^0\)(gt)

       AD = DE (cmt)

   \(\widehat{ADF}=\widehat{EDC}\) (đối đỉnh)

=> t/giác ADF = t/giác EDC (g.c.g)

=> DF = DC (2 cạnh t/ứng)

c) Ta có: AD < DF (cgv < ch)

Mà DF = DC (cmt)

=> AD < DC 

d) Xét t/giác ABC có AB > AC 

=> \(\widehat{BCA}>\widehat{B}\) (quan hệ giữa cạnh và góc đối diện)

=> \(\frac{1}{2}.\widehat{BCA}>\frac{1}{2}.\widehat{B}\)

hay \(\widehat{ICB}>\widehat{B_2}\)

=> BI > IC (quan hệ giữa góc và cạnh đối diện)

a) Xét tam giác vuông BED và tam giác vuông BAD ta có :

ABD = EBD ( BD là pg ABC )

BD chung

=> Tam giác BED = tam giác BAD ( ch-gn)

=  >AD = DE( tg ứng)

b) Xét tam giác vuông AFD và tam giác vuông EDC ta có :

AD = DE (cmt)

ADF = EDC ( đối đỉnh)

=> Tam giác AFD = tam giác EDC ( cgv-gn)

=> DF = DC (dpcm)

c) Xét tam giác vuông DEC có 

DE < DC( quan hệ giữa cạnh huyền và cạnh góc vuông trong tam giác)

Mà AD = DE (cmt)

=> AD < DC

d) chịu

19 tháng 2 2019

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Lời giải:

Trên cạnh AC lấy điểm E sao cho AE = AB.

Ta có: AB < AC nên AE < AC

Suy ra E nằm giữa A và C.

Xét ΔABD và ΔAED, ta có:

AB = AE (theo cách vẽ)

∠(BAD) = ∠(EAD) (gt)

AD cạnh chung

Suy ra: ΔABD = ΔAED (c.g.c)

Suy ra: BD = DE (2 cạnh tương ứng)

và ∠(ABD) = ∠(AED) (2 góc tương ứng)

Mà: ∠(ABD) + ∠B1= 180o (2 góc kề bù)

∠(AED) + ∠E1= 180o (2 góc kề bù)

Suy ra: ∠B1= ∠E1

Trong ΔABC ta có ∠B1là góc ngoài tại đỉnh B

Ta có: ∠B1 > ∠C (tính chất góc ngoài của tam giác)

Suy ra: ∠E1> ∠C

Suy ra: DC > DE (đối diện góc lớn hơn là cạnh lớn hơn)

Vậy BD < DC.

Trên cạnh AC lấy điểm E sao cho AE = AB

AB < AC nên AE < AC => E nằm giữa A và C

Xét ∆ABD và ∆AED:

 AB = AE (theo cách vẽ)      

\(\widehat{BAD}=\widehat{EAD}\left(gt\right)\)

AD cạnh chung

Do đó: ∆ABD = ∆AED (c.g.c)

=> BD = DE (2 cạnh tương ứng)

\(\Rightarrow\widehat{ABD}=\widehat{AED}\)(2 góc tương ứng)

\(\widehat{ABD}+\widehat{B_1}=180^0\)(2 góc kề bù)

\(\widehat{AED}+\widehat{E1}=180^0​\)(2 góc kề bù)

\(\Rightarrow\widehat{B_1}=\widehat{E_1}\)

Trong ∆ABC ta có\(\widehat{B_1}\)là góc ngoài tại đỉnh B.

\(\Rightarrow\widehat{B_1}>\widehat{C}\)(tính chất góc ngoài tam giác)

\(\Rightarrow\widehat{E_1}>\widehat{C}\)

Trong ∆DEC ta có:\(\widehat{E_1}>\widehat{C}\)

=>DC > DE  (đối diện góc lớn hơn là cạnh lớn hơn)

Suy ra: BD < DC

18 tháng 9 2019

Bài 1:

  B D A H C E

Vì CD và CE lần lượt là phân giác trong và phân giác ngoài của góc C nên \(CD\perp CE\)

Kẻ \(CH\perp AB\)thì \(\widehat{CED}=\widehat{HCD}\)cùng phụ với \(\widehat{EDC}\)

Ta có : \(\widehat{HCA}=90^0-\widehat{HAC}=90^0-\left[180^0-\widehat{BAC}\right]=\widehat{BAC}-90^0\)

\(\widehat{ACD}=\frac{1}{2}\widehat{ACB}=\frac{1}{2}\left[180^0-\widehat{ABC}-\widehat{BAC}\right]=90^0-\frac{1}{2}\left[\widehat{ABC}+\widehat{BAC}\right]\)

Do đó \(\widehat{HCD}=\widehat{HCA}+\widehat{ACD}=\frac{\widehat{BAC}-\widehat{ABC}}{2}\)nếu \(\widehat{BAC}>\widehat{ABC}\).

Nếu \(\widehat{BAC}< \widehat{ABC}\)thì \(\widehat{HCD}=\frac{\widehat{ABC}-\widehat{BAC}}{2}\)

Vậy \(\widehat{HCD}=\left|\frac{\widehat{BAC}-\widehat{ABC}}{2}\right|\).

2. Giả sử \(\widehat{B}>\widehat{C}\), ta có : \(\widehat{DAH}=\frac{\widehat{B}-\widehat{C}}{2}\)

Suy ra \(\widehat{B}-\widehat{C}=2\widehat{DAH}=2\cdot15^0=30^0\)

Mặt khác \(\widehat{B}+\widehat{C}=90^0\)từ đó suy ra \(\widehat{B}=60^0,\widehat{C}=30^0\)

Nếu \(\widehat{B}< \widehat{C}\)thì chứng minh tương tự,ta có \(\widehat{B}=30^0,\widehat{C}=60^0\)

P/S : Hình bài 1 chỉ mang tính chất minh họa nhé

19 tháng 9 2019

Theo yêu cầu vẽ hình của bạn Hyouka :)

2. 

B A C H D TH: ^B > ^C        B A C H D TH: ^B < ^C