K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2019

d. Chứng minh đc ABDC là hình chữ nhật.

=> \(S_{ABDC}=AB.AC\)

Để \(S_{ABDC}=AB^2\)

khi đó AC = AB

=> Tam giác ABC có thêm điều kiện: cân tại A

25 tháng 11 2019

B A C D P N M

a) Xét tứ giác BMCP có : 

N là trung điểm của MP

N là trung điểm của BC

=> BMCP là hình bình hành ( dấu hiệu )

b) Xét tam giác ABC có :

M là trung điểm của AB

N là trung điểm của BC

=> Mn là đường trung bình của tam giác ABC ( định nghĩa )

=> MN // AC hay MP // AC ; MN = 1/2 AC ( tính chất )

Vì MN = MP

=> MN + MP = 1/2 AC + 1/2 AC = AC = MP

Xét tứ giác AMPC có : AC // MP ; AC = MP

=> AMPC là hình bình hành ( dấu hiệu )

Hình bình hành AMPC có :  góc ABC = 90o

=> AMPC là hình chữ nhật ( dấu hiệu )

22 tháng 12 2016

a)    do am là đường trung tuyến

=>m là trung điểm bc

Mà m là trung điểm của ad (do d là điểm đối xứng với a qua m)

=>ad giao với ad tại m là trung điểm mỗi đường

=>abcd là hbh

b)   Giả sử abcd là hcn

=>góc a=90 độ

=>tam giác abc vuông tại a

Vậy tam giác abc là tam giác vuông tại a thìabcd là hcn

c) gọi mn giao ac tại e

=>e là tđ của ac

e là tđ của mn

=>anmc là hbh

ta có am=mc(vì am là đường trung tuyến trong tam giác vuông)

=>amnc là hình thoi

cm: abmn là hbh

=>ab=mn 

diện tích amnc=ac*mn/2=4*3/2=6

    

17 tháng 12 2023

a: Xét ΔABC có

M,N lần lượt là trung điểm của AB,AC

=>MN là đường trung bình của ΔABC

=>MN//BC và \(MN=\dfrac{BC}{2}\)

Ta có: MN//BC

D\(\in\)NM

Do đó; MD//CB

ta có: \(MN=\dfrac{CB}{2}\)

\(MN=\dfrac{MD}{2}\)

Do đó:CB=MD

Xét tứ giác BMDC có

BC//MD

BC=MD

Do đó: BMDC là hình bình hành

b: Xét tứ giác AMCD có

N là trung điểm chung của AC và MD

nên AMCD là hình bình hành

17 tháng 12 2023

Anh ơi anh giúp em câu hỏi em mới đăng với nha anh thanks anh nhiều lắm ạ

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông gócvới nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tiađối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.a) Chứng minh các tam giác APS, AQR là các tam giác cân.b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.Chứng minh tứ giác AMHN là hình chữ...
Đọc tiếp

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông góc
với nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tia
đối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.
a) Chứng minh các tam giác APS, AQR là các tam giác cân.
b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.
Chứng minh tứ giác AMHN là hình chữ nhật.
Bài 14: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CA,
AD.
a) Tứ giác MNPQ là hình gì?
b) Gọi M là trung điểm của DB, AD=6, AB=8. Cho AM=1/2DB
. Tính QM.
Bài 15: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC.
a) Tứ giác BMNC là hình gì? Vì sao?
b) Lấy điểm E đối xứng với M qua N. Chứng minh tứ giác AECM là hình bình
hành.
c) Tứ giác BMEC là hình gì? Vì sao?
d) Tam giác ABC cần thêm điều kiện gì thì tứ giác AECM là hình vuông? Vẽ
hình minh hoạ.

0

a: Xét tứ giác BMCD có

N là trung điểm chung của BC và MD

=>BMCD là hình bình hành

b: Ta có: BMCD là hình bình hành

=>BM//CD và BM=CD

Ta có: BM//CD

M\(\in\)AB

Do đó: AM//CD

ta có: BM=CD

AM=MB

Do đó: AM=CD

Xét tứ giác AMDC có

AM//DC

AM=DC

Do đó: AMDC là hình bình hành

Hình bình hành AMDC có \(\widehat{MAC}=90^0\)

nên AMDC là hình chữ nhật

c: Ta có: AMDC là hình chữ nhật

=>\(\widehat{DMA}=90^0\)

=>DM\(\perp\)AB tại M

Xét ΔDBA có

DM là đường cao

DM là đường trung tuyến

Do đó: ΔDBA cân tại D

loading...

Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F saocho AE=EF=FC.a) Tứ giác BEDF là hình gì?b) Chứng minh tam giác CFD= tam giác AEBc) Chứng minh tam giác CFB= tam giác EADBài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.a) Xác định D sao cho BDCA là hình vuông.b) Tính độ dài DA.c) Tính diện tích ABCD.Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.a) Xác định O để ABCD là hình bình...
Đọc tiếp

Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh tam giác CFD= tam giác AEB
c) Chứng minh tam giác CFB= tam giác EAD

Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?

Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông góc
với nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tia
đối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.
a) Chứng minh các tam giác APS, AQR là các tam giác cân.
b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.
Chứng minh tứ giác AMHN là hình chữ nhật.
Bài 14: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CA,
AD.
a) Tứ giác MNPQ là hình gì?
b) Gọi M là trung điểm của DB, AD=6, AB=8. Cho DBAM. Tính QM.
Bài 15: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC.
a) Tứ giác BMNC là hình gì? Vì sao?
b) Lấy điểm E đối xứng với M qua N. Chứng minh tứ giác AECM là hình bình
hành.
c) Tứ giác BMEC là hình gì? Vì sao?
d) Tam giác ABC cần thêm điều kiện gì thì tứ giác AECM là hình vuông? Vẽ
hình minh hoạ.

Mong mn giúp mk vs ah

1

đây là nhóm hỏi những bài khó chứ không phải nơi chép bài của những bạn lười nhé

29 tháng 10 2021

Bạn nói hay đó

Đc của ló

 

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.a) Chứng minh tứ giác MEPF là hình thoi.b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàngBài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻđường thẳng...
Đọc tiếp

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB<AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

5
2 tháng 3 2020

Bài 1:

A B C D M N P Q E F

a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)

\(\Rightarrow ME\)là đường trung bình tam giác ABC

\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)

Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)

\(\Rightarrow PE\)là đường trung bình của tam giác ADC

\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)

mà \(AD=BC\left(gt\right)\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)

CMTT: \(PE=FP,FM=ME\)

\(\Rightarrow ME=EP=PF=FM\)

Xét tứ giác MEPF có:

\(ME=EP=PF=FM\left(cmt\right)\)

\(\Rightarrow MEPF\)là hình thoi ( dhnb)

 b) Vì \(MEPF\)là hình thoi (cmt)

\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc)  (4)

Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)

\(\Rightarrow MQ\)là đường trung bình của tam giác ADB

\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)

Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)

\(\Rightarrow NP\)là đường trung bình của tam giác BDC

\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)

Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)

Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)

\(\Rightarrow MQPN\)là hình bình hành (dhnb)

\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)

Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm 

c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)

\(\Rightarrow QF\)là đường trung bình của tam giác ADB

\(\Rightarrow QF//AB\left(8\right)\)

CMTT: \(FN//CD\)và \(EN//AB\)

Mà Q,F,E,N thẳng hàng 

\(\Rightarrow AB//CD\)

Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện  \(AB//CD\)


 

2 tháng 3 2020

Tối về mình làm nốt  nhé giờ mình có việc 

22 tháng 11 2016

a) ta có góc DMA=MAN=DAN=900

=> tứ giác AMDN là hình chữ nhật

b) ta có DB=DC VÀ DN // MA ( do MDNA là hình chữ nhật )

=> DN là đường trung bình của tam giác ABC

--> AN=NC hay N là trung điểm của AC

c) ta có tứ giác ADCE có 2 đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành. Hình bình hành ADCE có 2 đường chéo vuông góc với nhau nên là hình thoi

d)

11 tháng 11 2017

a)Xét tứ giác AMDN ,có:

góc MAN=90(ΔABC vuông tại A)

góc AMD=90(DM⊥AB)

góc AND=90(DN⊥AC)

⇒Tứ giác AMDN là hình vuông

b)Xét △ABC vuông tại A,có:

AD là đường trung tuyến ứng vs cạnh huyền BC

⇒AD=1/2 BC hay AD=DC

Xét △ADC có:

AD=DC(cmt)

⇒△ADC là tam giác cân tại D

Xét △ADC cân tại D,có:

AN là đường cao (DN⊥AC)

⇒N là trung điểm AC

c)Xét tứ giác ADCE,có:

N là trung điểm DE

N là trung điểm AC

mà DE và AC là 2 đg chéo cắt nhau tại N

⇒tứ giác ADCE là hình bình hành

Xét hbh ADCE ,có:

ND⊥AC

⇒hbh ADCE là hình thoi

Xét hình chữ nhật AMDN ,có:

DN=AN hay DN=AN=NE=NC hay DE=AC

Xét hình thoi ADCE có :

DE=AC

mà DE và AC là 2 đg chéo

⇒ADCE là hình vuông

d)Giả sử tứ giác ABCE là hình thang cân

⇔góc B=góc C

⇔△ABC là tam giác vuông cân tại A

Vậy để tứ giác ABCE là hình thang cân thì △ABC là tam giác vông cân tại A

24 tháng 12 2018

a)Xét tứ giác AMDN ,có:

góc MAN=90(ΔABC vuông tại A)

góc AMD=90(DM⊥AB)

góc AND=90(DN⊥AC)

⇒Tứ giác AMDN là hình vuông

b)Xét △ABC vuông tại A,có:

AD là đường trung tuyến ứng vs cạnh huyền BC

⇒AD=1/2 BC hay AD=DC

Xét △ADC có:

AD=DC(cmt)

⇒△ADC là tam giác cân tại D

Xét △ADC cân tại D,có:

AN là đường cao (DN⊥AC)

⇒N là trung điểm AC

c)Xét tứ giác ADCE,có:

N là trung điểm DE

N là trung điểm AC

mà DE và AC là 2 đg chéo cắt nhau tại N

⇒tứ giác ADCE là hình bình hành

Xét hbh ADCE ,có:

ND⊥AC

⇒hbh ADCE là hình thoi

Xét hình chữ nhật AMDN ,có:

DN=AN hay DN=AN=NE=NC hay DE=AC

Xét hình thoi ADCE có :

DE=AC

mà DE và AC là 2 đg chéo

⇒ADCE là hình vuông

d)Giả sử tứ giác ABCE là hình thang cân

⇔góc B=góc C

⇔△ABC là tam giác vuông cân tại A

Vậy để tứ giác ABCE là hình thang cân thì △ABC là tam giác vông cân tại A