Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có góc BDC là góc ngoài của tam giác vuông ADC nên góc BDC là góc tù
b) Ta có góc BDC là góc ngoài của tam giác ADC nên góc BDC = góc A + góc ACD
=> góc ACD = góc BDC - góc A = 105 độ - 90 độ = 15 độ
mà CD là tia phân giác của góc ACB nên góc ACB = 2.góc ACD = 2.15 = 30 độ
Trong tam giác ABC có góc A + góc B + góc ACB = 180 độ
=> góc B = 180 độ - (góc A + góc ACB) = 180 độ - (90 độ + 30 độ) = 60 độ
a: Xét ΔABC có \(\widehat{B}>\widehat{C}\)
nên AB<AC
Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có
CH chung
HA=HD
Do đo; ΔAHC=ΔDHC
c: Xét ΔACB và ΔDCB có
CA=CD
\(\widehat{ACB}=\widehat{DCB}\)
CB chung
Do đó: ΔACB=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)
a: Xét ΔABC có ˆB>ˆCB^>C^
nên AB<AC
Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có
CH chung
HA=HD
Do đo; ΔAHC=ΔDHC
c: Xét ΔACB và ΔDCB có
CA=CD
ˆACB=ˆDCBACB^=DCB^
CB chung
Do đó: ΔACB=ΔDCB
Suy ra: ˆBAC=ˆBDC=900
Bài 5:
a: Xét ΔABK vuông tại K và ΔIBK vuông tại K có
BK chung
góc ABK=góc IBK
Do đó: ΔABK=ΔIBK
Suy ra: BA=BI
hay ΔBAI cân tại B
b: Xét ΔBAD và ΔBID có
BA=BI
goc ABD=goc IBD
BD chung
DO đó ΔBAD=ΔBID
Suy ra: góc BID=90 độ
=>DI vuông góc với BC
* Xét tam giác ADB và tam giác ADE, ta có:
- AB = AE(gt)
- Góc BAD = góc EAD( do AD là phân giác góc BAC : theo gt)
- Chung cạnh AD
=> Tam giác ADB = Tam giác ADE(c-g-c) (1)
* Từ (1) => Góc ABD= góc AEB( các yếu tố tương ứng) (dpcm)
tk nha bạn
thank you bạn
(^_^)
a)ta co: dh=dk(tc tia phan giac cua mot goc)
goc d1=d2(gt)
da: canh chung
=> hk=dk => da la duong trung truc cua hk.
=> dhk la tam giac deu.
b) loang ngoang kho hieu luc khac giai
a. Do D thuộc đường phân giác của góc BAC nên DH = DK, hay ta, giác DHK cân.
Cũng do AD là phân giác của góc BAC nên \(\widehat{KAD}=\widehat{DAH}=60^0\)
Lại có: \(\widehat{KAD} + \widehat{ADK}=90^0, \widehat{KAD}=60^0 \Rightarrow \widehat{ADK}=30^0.\)
Tương tự như vậy, \(\widehat{ADH}=30^0\). Từ đó ta dễ thấy rằng \(\widehat{HDK}=60^0\).
Tam giác cân DHK có một góc bằng \(60^0\) nên DHK là tam giác đều.
b. Ta thấy góc IAC kề bù với góc BAC nên \(\widehat{IAC}=180^0-120^0=60^0\)
Lại có do AD song song CI nên \(\widehat{ACI}=\widehat{DAC}=60^0\) (So le trong)
Tam giác ACI có 2 góc bằng \(60^0\) nên góc còn lại cũng bằng \(60^0\) và đó là tam giác đều.
PS: Chú ý đến các giải thiết liên quan tới đối tượng cần chứng minh để tìm cách giải em nhé, chúc em học tốt ^^