Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔCHA vuông tại H có HE là đường cao
nên \(EC\cdot EA=HE^2\)
=>\(EC\cdot EA=36\)
EA+EC=AC
=>EA+EC=9
EC*EA=36 và EA+EC=9
=>EA,EC là hai nghiệm của phương trình: \(x^2-9x+36=0\)(1)
\(\text{Δ}=\left(-9\right)^2-4\cdot1\cdot36=81-144=-63< 0\)
=>Phương trình (1) vô nghiệm
Do đó: BC không có số đo
BC=căn 3^2+4^2=5cm
=>AH=3*4/5=2,4cm
góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hcn
=>AH=EF=2,4cm
Cho tam giác ABC vuông tại A. Đường cao AH. kẻ HE vuông góc AB, Hf vuông góc AC. Cmr: AH^2= BC.BE.CF
a)Áp dụng đl pytago ta có:
`BC^2=AB^2+AC^2=36+64=100`
`<=>BC=10cm`
Áp dụng HTL vào tam giác vuông ABC ta có:
`AH.BC=AB.AC`
`<=>10AH=48`
`<=>AH=4,8cm`
b)Xét tam giác vuông HAC ta có:
`cos hat{HAC}=(AH)/(AC)=3/5`
`=>hat{HAC}=53^o`
- Áp dụng định lý pitago vào tam giác ABC vuông tại A .
\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
- Áp dụng hệ thức lượng vào tam giác vuông ABC đường cao AH .
\(AH.BC=AB.AC\)
\(\Rightarrow AH=\dfrac{AB.AC}{BC}=4,8\left(cm\right)\)
b, - Áp dụng tỉ số lượng giác vào tam giác HAC
Có : \(\cos A2=\dfrac{AH}{AC}=\dfrac{3}{5}\)
\(\Rightarrow\widehat{A2}\approx53^o\)15,
c, - Đề không rõ bạn ơi ;-;
a) tam giác ABC vuông tại A nên áp dụng Py-ta-go:
\(\Rightarrow AC^2=BC^2-AB^2=25^2-15^2=400\Rightarrow AC=20\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{15.20}{25}=12\left(cm\right)\)
b) tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right)\)
tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng
\(\Rightarrow AH.HB=HE.AB\Rightarrow HE=\dfrac{AH.HB}{AB}=\dfrac{12.9}{15}=\dfrac{36}{5}\left(cm\right)\)
b) tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng
\(\Rightarrow AE.AB=AH^2\)
tam giác AHC vuông tại H có đường cao HF nên áp dụng hệ thức lượng
\(\Rightarrow AF.AC=AH^2=AE.AB\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=25^2-15^2=400\)
hay AC=20(cm)
c) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H, ta được:
\(AE\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H, ta được:
\(AF\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
Xét tam giác ABC vuông tại A có đường cao AH nên:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Rightarrow AH=\sqrt{\dfrac{AB^2AC^2}{AB^2+AC^2}}=\sqrt{\dfrac{4^2\cdot2^2}{4^2+2^2}}=\dfrac{4\sqrt{5}}{5}\)
Xét tam giác ABH vuông tại H áp dụng Py-ta-go ta có:
\(AB^2=AH^2+BH^2\)
\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{4^2-\left(\dfrac{4\sqrt{5}}{5}\right)^2}=\dfrac{8\sqrt{5}}{5}\)
Xét tam giác ABH vuông tại H có đường cao HE ta có:
\(\dfrac{1}{HE^2}=\dfrac{1}{BH^2}+\dfrac{1}{AH^2}\)
\(\Rightarrow HE=\sqrt{\dfrac{BH^2AH^2}{BH^2+AH^2}}=\sqrt{\dfrac{\left(\dfrac{8\sqrt{5}}{5}\right)^2\cdot\left(\dfrac{4\sqrt{5}}{5}\right)^2}{\left(\dfrac{8\sqrt{5}}{8}\right)^2+\left(\dfrac{4\sqrt{5}}{5}\right)^2}}=\dfrac{8}{5}\)