Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: XétΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
a, Xét ΔABH và ΔAHD có
Góc A chung
Góc ADH=Góc AHB=90°
=> ΔABH ~ΔAHD(g.g)
=> AH/AB=AD/AH
=> AB.AD=AH²(1)
Xét ΔAEH và ΔAHC có:
Góc A chung
Góc AEH = góc AHC
=>ΔAEH~ΔAHC(g.g)
=> AE/AH=AH/AC
=>AE.AC=AH²(2)
Từ (1);(2) => AD.AB=AE.AC(đpcm)
b, vì ΔABC vuông tại A có AI là trung tuyến ứng với cạnh huyền=> BI=IC=AI
=> ΔAIC cân tại I
=>góc IAC =góc ICA
Ta cũng có ΔBIA cân tại I =>góc IBA=góc BAI
Mà góc BAI =góc AED(cùng phụ)
=> góc IBA=góc AED
Mà ABI+góc ACI= 90°
=> gócAED + góc IAC=90°
=> DEvuông góc vs AI
c,
mình làm câu c,d nek bạn
c, ta có\(\Delta\)HEC vuông tại E( vì E là hình chiếu của H nên Góc E=90 độ)
=> EN là đường trung tuyến ứng vs cạnh huyền
=> EN=NH=NC( vì N là trung điểm của HC)
=> \(\Delta\)ENC cân tại N(NE=NC cmt)
=> góc NEC=góc NCE(hai góc đáy) (1)
chứng minh tương tự trong \(\Delta\)BMD cân tại M
=> góc DBM=góc MDB(2)
ta có \(\Delta\)ABC vuông tại A nên góc DBM+góc NCE=90 độ
=>góc MDB+ góc NEC(vì (1);(2)) (3)
và \(\Delta\)\(\Delta\)
DAE vuông tại A nên góc ADE+góc AED=90 độ (4)
từ (3);(4)=>góc BDM+góc ADE=90 độ
=> góc MDH+góc HDE=90 độ ( 180 độ - (MDH+HDE))
=> DM\(\perp\) DE (*)
và góc DEA+ góc NEC=90 độ
=> góc HDE+góc HEN= 90 độ
=> DE\(\perp\) EN (**)
từ (*); (**)=> MDEN là hình thang (DM // EN vì cùng \(\perp\)vs DE)
d, Ta có DHEA là hình chữ nhật (góc D= góc H =Góc E=90 độ)
=> OH=OA=OD=OE (t/c đường chéo hcn)
=> OH=OA=HA/2
ta có HM+HN=BM+NC(vì BM=MH; NH=NC)
=> MH+HN=BC/2=>MN=1/2 BC
diện tích \(\Delta\)ABC =1/2. AH. BC
diện tích \(\Delta\)MON=1/2.OH.MN=1/2.1/2AH.1/2BC
Vậy (S\(\Delta\) MON)/(S\(\Delta\)ABC)=(1/2.AH.BC)/(1/8 AH.BC)
=4
Mình nghĩ là làm như vậy, có gì bạn góp ý nha
a) Xét tứ giác ADHE có: \(\widehat{DAE}=\widehat{AEH}=\widehat{ADH}=90^o\)
=> ADHE là hình chữ nhật
=> \(\widehat{DAH}=\widehat{DEH}\)
Ta lại có: \(\left\{{}\begin{matrix}\widehat{AED}+\widehat{DEH}=90^o\\\widehat{ABC}+\widehat{DAH}=90^o\end{matrix}\right.\)
Do đó: \(\widehat{AED}=\widehat{ABC}\)
Xét tam giác AED và ABC
Ta có: Góc A chung
\(\widehat{AED}=\widehat{ABC}\) (cmt)
=> Tam giác AED và ABC đồng dạng (g-g)
=> \(\frac{AE}{AB}=\frac{AD}{AC}\Rightarrow AD.AB=AE.AC\) (Đpcm)
b) Ghi rõ lại đề cần chứng minh
c) Xét tam giác HEC vuông tại E có đường trung tuyến EN ( HN = CN )
=> EN = CN = HN nên tam giác ENC cân tại N
=> Góc NEC = Góc NCE hay góc NEC = góc ACB
Mà góc ACB = góc DAH ( cùng phụ với góc HAC )
Do đó: Góc NEC = Góc DAH, Góc DAH = Góc DEH ( vì ADHE là hình chữ nhật nên là tứ giác nội tiếp )
=> Góc NEC = Góc DEH => Góc NEC + góc HEN = Góc DEH + góc HEN
=> Góc DEN = 90 độ
CMTT: Góc MDE = 90 độ
=> DMNE là hình thang vuông
Xét hình thang vuông DMNE có: DQ = DE ( do hình chữ nhật ADEH )
MP = PN ( do P là trung điểm của MN )
=> QP là đường trung bình của hình thang vuông DMNE
=> \(QP=\frac{\left(DM+EN\right)}{2}\)
Từ giả thuyết AB = 6, AC = 8, áp dụng định lý Pitago và hệ thức lượng trong tam giác vuông ta được: BC = 10; AH = 4,8 ; BH = 3,6; CH = 6,4
Vì tam giác BDM, HEC vuông lần lượt có các đường trung tuyến DM, EN
Nên: DM = 1/2BH = 1/2.3,6 = 1,8
EN = 1/2CH=1/2.6,4 = 3,2
Do đó: PQ = ( 1,8 + 3,2)/2 = 2,5 (cm)
Câu b chứng minh DE là tiếp tuyến chung của (M;MD) và (N;NE) thì áp dụng phần đầu của câu c là chứng minh vuông.