Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
hay AH=2,4(cm)
Xét tứ giác AMHN có
\(\widehat{MAN}=\widehat{ANH}=\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật
Suy ra: AH=MN=2,4(cm)
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=3^2+4^2=25\)
=>\(BC=\sqrt{25}=5\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot5=3\cdot4=12\)
=>AH=12/5=2,4(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH\cdot5=3^2=9\)
=>BH=9/5=1,8(cm)
b: Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)
=>\(sinB=\dfrac{4}{5}\)
Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}\)
=>\(sinC=\dfrac{3}{5}\)
a,Sin B=\(\frac{AC}{BC}=\)\(\frac{4}{5}=0.8\)
Cos B=\(\frac{AB}{BC}=\frac{3}{5}=0,6\)
Tan B =\(\frac{AC}{AB}=\frac{4}{3}\)
Cot B=\(\frac{AB}{AC}=\frac{3}{4}=0,75\)
b,Vì sin B = 0,8 => B=53o
=> C=37o(áp dụng hệ quả định lí tổng r tính)
\(a,\) Áp dụng pytago: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
Áp dụng HTL: \(AH\cdot BC=AB\cdot AC=12\Leftrightarrow AH=\dfrac{12}{BC}=2,4\left(cm\right)\)
\(b,\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{4}{5}\approx\left[{}\begin{matrix}\sin53^0\\\cos37^0\end{matrix}\right.\\ \Leftrightarrow\widehat{B}\approx53^0;\widehat{C}\approx37^0\)
a) Xét tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2\left(pytago\right)\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
Áp dụng HTL:
\(AB.AC=AH.BC\)
\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3.4}{5}=2,4\left(cm\right)\)
b) Xét tam giác ABC vuông tại A:
\(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)
\(\Rightarrow\widehat{B}\approx53^0\)
\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)
\(\Rightarrow\widehat{C}\approx37^0\)
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=5(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH\cdot BC=AB\cdot AC\)
hay AH=2,4(cm)
à..........cái đó thì mình chưa tính ra được