K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3:

góc C=90-50=40 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>4/BC=sin40

=>\(BC\simeq6,22\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)

1:

góc C=90-60=30 độ

Xét ΔABC vuông tại A có

sin B=AC/BC

=>3/BC=sin60

=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)

=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)

17 tháng 8 2023

còn câu 2 

 

14 tháng 10 2021

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

hay AH=2,4(cm)

Xét tứ giác AMHN có 

\(\widehat{MAN}=\widehat{ANH}=\widehat{AMH}=90^0\)

Do đó: AMHN là hình chữ nhật

Suy ra: AH=MN=2,4(cm)

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=3^2+4^2=25\)

=>\(BC=\sqrt{25}=5\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot5=3\cdot4=12\)

=>AH=12/5=2,4(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH\cdot5=3^2=9\)

=>BH=9/5=1,8(cm)

b: Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)

=>\(sinB=\dfrac{4}{5}\)

Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}\)

=>\(sinC=\dfrac{3}{5}\)

7 tháng 9 2017

a,Sin B=\(\frac{AC}{BC}=\)\(\frac{4}{5}=0.8\)

 Cos B=\(\frac{AB}{BC}=\frac{3}{5}=0,6\)

Tan B =\(\frac{AC}{AB}=\frac{4}{3}\)

Cot B=\(\frac{AB}{AC}=\frac{3}{4}=0,75\)

b,Vì sin B = 0,8 => B=53o

                         => C=37o(áp dụng hệ quả định lí tổng r tính)

21 tháng 12 2021

a: BC=5cm

AH=2,4cm

BH=1,8cm

CH=3,2cm

3 tháng 10 2021

\(a,\) Áp dụng pytago: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)

Áp dụng HTL: \(AH\cdot BC=AB\cdot AC=12\Leftrightarrow AH=\dfrac{12}{BC}=2,4\left(cm\right)\)

\(b,\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{4}{5}\approx\left[{}\begin{matrix}\sin53^0\\\cos37^0\end{matrix}\right.\\ \Leftrightarrow\widehat{B}\approx53^0;\widehat{C}\approx37^0\)

3 tháng 10 2021

a) Xét tam giác ABC vuông tại A:

\(BC^2=AB^2+AC^2\left(pytago\right)\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

Áp dụng HTL:

\(AB.AC=AH.BC\)

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3.4}{5}=2,4\left(cm\right)\)

b) Xét tam giác ABC vuông tại A:

\(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)

\(\Rightarrow\widehat{B}\approx53^0\)

\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

\(\Rightarrow\widehat{C}\approx37^0\)

 

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=5(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH\cdot BC=AB\cdot AC\)

hay AH=2,4(cm)