K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2020

Nguyễn Thảo Nguyên             

em chịu khó gõ link này lên google

https://olm.vn/hoi-dap/detail/99235669166.html

26 tháng 4 2020

Thế lên google mak gõ cho nhanh nha bn!

3 tháng 3 2021

Áp dụng định lý Py-ta-go vào ΔABHta có :

AB^2=AH^2+BH^2

=AH^2+18^2

=AH^2+324

AH^2=AB^2−324

Áp dụng định lý Py-ta-go vào ΔAHC ta có

AC^2=HC^2+AH^2

=322+(AB^2−324)

=1024−324+AB^2

=700+AB^2

AC=√700+AB2

16 tháng 2 2022

cây lụi

Ta có: BC=HB+HC=18+32=50

-Xét \(\Delta ABC\)có: BC2=AB2+AC2 (Theo định lý Py-ta-go)

Mà \(\hept{\begin{cases}AB^2=AH^2+HB^2\\AC^2=AH^2+HC^2\end{cases}}\)

=> BC2=AH2+HB2+AH2+HC2

=> 502=2AH2+182+322

=> 2500=2AH2+324+1024

=> 2500=2AH2+1348

=> 2AH2=1152

=> AH2=576

=> AH=24

=> \(\hept{\begin{cases}AB^2=AH^2+HB^2=24^2+18^2=900\\AC^2=AH^2+HC^2=24^2+32^2=1600\end{cases}}\)

=> AB=30

     AC=40

Vậy AB=30 cm

       AC=40cm

16 tháng 4 2020

A B C H

(thêm kí hiệu góc vuông ở đỉnh A nx nha bạn, mình quên)

Cm:

Áp dụng định lí Py-ta-go:

Xét \(\Delta\)AHB có:

AH2 + BH2 = AB2     (1)

Xét \(\Delta\)AHC có:

AH2 + CH2 = AC2     (2)

Cộng (1) và (2) vế theo vế, ta được:

2AH2 + BH2 + CH2 = AB2 + AC2

<=> 2AH2 + BH2 + CH2 = BC2

<=> 2AH2 + 182 + 322 = (18+32)2

<=> 2AH2 + 1348 = 2500

<=> 2AH2 = 1152

<=> AH2 = 576

<=> AH = \(\sqrt{576}\)= 24 (cm)

Thay AH = 24 và BH = 18 vào (1) ta được:

242 + 182 = AB2

<=> 900 = AB2

<=> AB = \(\sqrt{900}\)= 30 (cm)

Thay AH = 24 và CH = 32 vào (2) ta được:

242 + 322 = AC2

<=> 1600 = AC2

<=> AC = \(\sqrt{1600}\)= 40 (cm)

Vậy AB = 30 cm ; AC = 40 cm

16 tháng 4 2020

thank ciu bạn nha <3

A B C H 8cm 32cm ??? Chỉ mag TC minh họa 

AD định lí Py ta go

\(AB^2=AH^2+BH^2=AH^2+8^2=AH^2+64\)

\(\Rightarrow AB=AH^2+64\)

Thực hiện tiếp vs AC 

23 tháng 1 2017

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

23 tháng 1 2017

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

25 tháng 2 2020

a) áp dụng đ/l pitago zô tam giác zuông abh ta đc

=> AB^2=AH^2+HB^2

=> AH^2=Ab^2-HB^2

=> AH=24

áp dụng dl pitago zô tam giác zuông ahc

=> AC^2=AH^2+HC^2

=> AC=40

b) Tco : CH+HB=32+18=50

Tam giac ABC có

\(\hept{\begin{cases}AB^2+AC^2=40^2+30^2=2500\\BC^2=50^2=2500\end{cases}}\)

=> \(AB^2+AC^2=BC^2\)

=> tam giác abc zuông

4 tháng 2 2020

A B C H

- Xét \(\Delta ABH\)\(\Delta CAH\) có :

\(\left\{{}\begin{matrix}\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\\\widehat{HAC}=\widehat{HBA}\left(+\widehat{HAB}=90^o\right)\end{matrix}\right.\)

=> \(\Delta ABH\approx\Delta CAH\left(g-g\right)\)

=> \(\frac{AH}{BH}=\frac{CH}{AH}\)

=> \(AH^2=BH.CH\)

=> \(AH=\sqrt{BH.CH}\)

Thay số : \(AH=\sqrt{18.32}=\sqrt{576}=24\left(cm\right)\)

- Áp dụng định lý pi - ta - go vào \(\Delta ABH\perp H\) ta có :

\(AH^2+BH^2=AB^2\)

Thay số : \(AB^2=18^2+24^2=900\)

=> \(AB=\sqrt{900}=30\left(cm\right)\)

- Áp dụng định lý pi - ta - go vào \(\Delta ACH\perp H\) ta có :

\(AH^2+CH^2=AC^2\)

Thay số : \(AC^2=32^2+24^2=1600\)

=> \(AB=\sqrt{1600}=40\left(cm\right)\)

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.5. Cho tam giác ABC, biết...
Đọc tiếp

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .

2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.

3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.

4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.

5. Cho tam giác ABC, biết BC bằng 52cm, AB = 20cm ,AC=48 cm.

a, Chứng minh tam giác ABC vuông ở A;

b, Kẻ AH vuông góc với BC. Tính AH .

6. Cho tam giác vuông cân ABC, A=90.Qua A kẻ đường thẳng d tùy ý. Từ B và C kẻ BH vuông d. Chứng minh rằng tổng BH^2+CK^2 ko phụ thuộc vào vị trí của đường thẳng d. 

7. Cho tam giác vuông ABC ,A= 90 độ. Trên nửa mặt phẳng bờ AC không chứa điểm B, kẻ tia CX sao cho CA là tia phân giác của gócBCx.Từ A kẻ AE vuông Có, từ B kẻ BD vuông AE. Gọi AH là đường cao của tam giác ABC. Chứng minh rằng :

a, A là trung điểm của DE 

b, DHE=90 độ 

8. Cho tam giác ABC có A bằng 90 độ,AB=8 cm,BC =17cm.Trên nửa mặt phẳng bờ AC ko chứa điểm B, vẽ tia CD vuông với AC và CD=36cm.Tính tổng độ dài các đoạn thẳngAB+BC+CD+DA. 

4

Bài 1:

A C B

Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)

Độ dài cạnh AC: 28 - 7 = 21 (cm)

Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:

\(BC^2=AC^2+AB^2\)

Hay \(BC^2=21^2+28^2\)

\(\Rightarrow BC^2=441+784\)

\(\Rightarrow BC^2=1225\)

\(\Rightarrow BC=35\left(cm\right)\)

Bài 2:

A B C D

Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:

\(AB^2=AD^2+BD^2\)

\(\Rightarrow AD^2=AB^2-BD^2\)

Hay \(AD^2=17^2-15^2\)

\(\Rightarrow AD^2=289-225\)

\(\Rightarrow AD^2=64\)

\(\Rightarrow AD=8\left(cm\right)\)

Trong tam giác ABC có:

\(AD+DC=AC\)

\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)

Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:

\(BC^2=BD^2+DC^2\)

Hay \(BC^2=15^2+9^2\)

\(\Rightarrow BC^2=225+81\)

\(\Rightarrow BC^2=306\)

\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)