Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lý Py-ta-go, ta có:
BC² = AB² + AC²
BC² = 3² + 4²
BC² = 9 + 16 = 25
⇒ BC =√25 = 5 cm
b) Xét ΔABD ( A = 90*) và ΔHBD ( H = 90*), có
BD chung
ABD = HBD ( BD là tia phân giác của góc ABC )
⇒ ΔABD = ΔHBD ( cạnh huyền - góc nhọn)
c) ΔHDC, có: BHD là góc vuông
⇒ DC là cạnh lớn nhất
⇒ HD < DC
Mà HD = DA (ΔABD = ΔHBD)
⇒ DA < DC (đpcm)
a) Xét ΔABCΔABC vuông tại A có :
\( A B ² + A C ² = B C ² (đ/l Py-ta-go)\)
\( ⇒ 3 ² + 4 ² = B C ²\)
\(⇒ B C ² = 25\)
\(⇒ B C = 5 ( c m )\)
Vậy \(BC=5cm\)
b) Xét \(Δ A B D và Δ H B D\)có :
\(+ ∠ B A D = ∠ B H D = 90 °\)
\(+ B D c h u n g\)
\(+ ∠ A B D = ∠ C B D \) (BD là phân giác của ∠B)
\( ⇒ Δ A B D = Δ H B D (ch-gn)\)
Vậy \(Δ A B D = Δ H B D\)
tôi chx bt lm
xin lỗi nhé
a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔABD=ΔHBD
b: Xét ΔDAE vuông tại A và ΔDHC vuông tại H có
DA=DH
AE=HC
=>ΔDAE=ΔDHC
=>DE=DC
Bạn tự vẽ hình nha ^^
a)--- Xét \(\Delta ABD\)và \(\Delta EBD\)có
\(AB=EB\left(GT\right)\)(1)
\(\widehat{BAD}=\widehat{BED}=90^o\)(2)
\(BD:\)Cạnh chung (3)
Từ (1) ;(2) và (3)
\(\Rightarrow\Delta ABD=\Delta EBD\)( c.g.c )
b)
---Theo đề bài ta có :
\(AB=EB\left(GT\right)\)(1)
và \(\widehat{ABC}=60^o\left(gt\right)\)(2)
Từ (1)và (2)\(\Rightarrow\Delta ABE\)đều (đpcm)
--- Vì \(\Delta ABE\)đều
\(\Rightarrow AB=BE=AE\)
Mà \(AB=6cm\)(gt)
...\(AE=EC\)
\(\Rightarrow EC=6cm\)
mà \(BE=6cm\)
Có \(EC+BE=BC\)
\(\Rightarrow6+6=12cm\)
Vậy BC =12cm
a ) xét 2 tam giác BAD và tam giác BHD (góc A= góc H= 90 độ)
ta có: cạnh huyền BD chung
góc ABD= góc HBD (vì BD là phân giác góc B)
=>tam giác BAD=tam giác BHD(cạnh huyền-góc nhọn)
<=>BA=BH (2 cạnh tương ứng)
: -Kéo dài EK cắt đường thẳng vuông góc với AB kẻ từ B tại Q.
-Chứng minh được: AB=AE=BQ. Mà theo phần a), ta có: BA=BH => BH=BQ.
=> tam giác BHK= tam giác BQK( cạnh huyền- cạnh góc vuông).
=> góc HBK= góc QBK. Mà theo phần a), ta có: góc ABD= góc DBH.
=> góc DBK= 1/2.góc ABD. Mà góc ABD= 90 độ.
=> góc DBK=45 độ.(đpcm)
a: Xét ΔABD và ΔAHD có
AB=AH
\(\widehat{BAD}=\widehat{HAD}\)
AD chung
Do đó: ΔABD=ΔAHD
b: Ta có: ΔABD=ΔAHD
\(\Leftrightarrow\widehat{ABD}=\widehat{AHD}\)
hay DH\(\perp\)AC
Xét ΔABD và ΔAHD có:
AD là cạnh chung
^BAD=^HAD (AD là tia phân giác)
AB= AH (gt)
Vậy ΔABD = ΔAHD
Do đó ^ABD =^AHD=90°
Nên DH ⊥ AC