Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E D I
a) Xét tam giác ABD và EBD có:
BA = BE (gt)
\(\widehat{ABD}=\widehat{EBD}\) (Do BD là tia phân giác góc B)
BD chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)
\(\Rightarrow AD=ED\) (Hai cạnh tương ứng)
b) Do \(\Delta ABD=\Delta EBD\left(cmt\right)\Rightarrow\widehat{BED}=\widehat{BAD}=90^o\)
Xét tam giác vuông ABC ta có \(\widehat{ABC}=90^o-\widehat{ACB}\)
Xét tam giác vuông DEC ta có \(\widehat{EDC}=90^o-\widehat{ACB}\)
Vậy nên \(\widehat{EDC}=\widehat{ABC}\)
c) Gọi giao điểm của AE và BD là I.
Xét tam giác ABI và tam giác EBI có:
AB = EB (gt)
\(\widehat{ABI}=\widehat{EBI}\)
BD chung
\(\Rightarrow\Delta ABI=\Delta EBI\left(c-g-c\right)\)
\(\Rightarrow\widehat{AIB}=\widehat{EIB}\) (Hai góc tương ứng)
Mà chúng lại ở vị trí kề bù nên \(\widehat{AIB}=\widehat{EIB}=90^o\)
Vậy nên \(AE\perp BD\)
a) Xét tam giác ACE và tam giác AKE
có AE chung
góc CAE =góc KAE (GT)
góc ECA = góc EKA =900
suy ra tam giác ACE = tam giác AKE (cạnh huyền-góc nhọn) (1)
b) Từ (1) suy ra AC=AK suy ra A thuộc đường trung trực của CK (2)
Từ (1) suy ra EK=EC suy ra E thuộc đường trung trực của CK (3)
Từ(2) và (3) suy ra AE là đường trung trực của CK
c) tam giác ABC vuông tại C, có góc CAB = 600
suy ra AC=AB:2 ( cạnh đối diện với góc 30 độ bằng nửa cạnh huyền)
mà AK=AC , AK +KB=AB
suy ra AK=AC=KB
d) tam giác BDE=tam giác BKE (cạnh huyền-góc nhọn)
(Câu này mình tìm thấy của Lê Thị Nhung ở h https://h.vn/vip/lethinhung262)
Vì \(\Delta ABC\) cân tại A nên AB=AC (đ/n) và \(\widehat{ABC}=\widehat{ACB}\)
Xét \(\Delta EBC\) và \(\Delta DCB\) có :
\(\widehat{EBC}=\widehat{DCB}\)
BC chung
\(\widehat{BEC}=\widehat{CDB}\) (=90o)
=> \(\Delta EBC\)=\(\Delta DCB\)(cgv-gnk)
=> BD=CE( cctư) (đpcm)
b) Vì \(\Delta EBC\)=\(\Delta DCB\)nên \(\widehat{IBC}=\widehat{ICB}\)(cgtư)
Xét\(\Delta IBC\)Có :\(\widehat{IBC}=\widehat{ICB}\)=> \(\Delta IBC\)cân=> IB=IC(đ/n)
c) Gọi giao điểm của AI và BC là O
Vì \(\widehat{ABC}=\widehat{ACB}\) và \(\widehat{IBC}=\widehat{ICB}\) nên \(\widehat{ABI}=\widehat{ACI}\)
Xét \(\Delta ABI\) và \(\Delta ACI\) có :
AB=AC
\(\widehat{ABI}=\widehat{ACI}\)
IB=IC
=> \(\Delta ABI=\Delta ACI\left(c.g.c\right)\)
=> \(\widehat{BAI}=\widehat{CAI}\left(cgtư\right)\)
Xét \(\Delta ABO\) và \(\Delta ACO\) có :
AB=AC
\(\widehat{ABO}=\widehat{ACO}\)
\(\widehat{BAO}=\widehat{CAO}\)
=> \(\Delta ABO=\Delta ACO\left(c.g.c\right)\)
=> \(\widehat{BOA}=\widehat{COA}\left(cgtư\right)\)
mà \(\widehat{BOA}+\widehat{COA}=180^o\)
=> \(\widehat{BOA}=\widehat{COA}\left(=90^o\right)\)
hay AI\(\perp\)BC (đpcm)
Cách 1. Xét tam giác ABD có ∠D2 là góc ngoài tam giác tại đỉnh D nên:
∠D2 = ∠B1 + ∠A
Suy ra: ∠D2 > ∠A (góc ngoài của ΔABD)
mà ∠A = 90o nên ∠D2 > 90o.
ΔBDC có ∠D2 > 90o nên ∠D2 > ∠C , do đó BC > BD.
Cách 2. Xét các đường xiên BD, BC.
Đoạn thẳng AD; AC lần lượt là hình chiếu của BD; BC trên đường thẳng AC.
Hình chiếu AC > AD nên đường xiên BC > BD. ( quan hệ đường xiên và hình chiếu của chúng ).