K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2018

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Cách 1. Xét tam giác ABD có ∠D2 là góc ngoài tam giác tại đỉnh D nên:

∠D2 = ∠B1 + ∠A

Suy ra: ∠D2 > ∠A (góc ngoài của ΔABD)

mà ∠A = 90o nên ∠D2 > 90o.

ΔBDC có ∠D2 > 90o nên ∠D2 > ∠C , do đó BC > BD.

Cách 2. Xét các đường xiên BD, BC.

Đoạn thẳng AD; AC lần lượt là hình chiếu của BD; BC trên đường thẳng AC.

Hình chiếu AC > AD nên đường xiên BC > BD. ( quan hệ đường xiên và hình chiếu của chúng ).

22 tháng 11 2017

A B C E D I

a) Xét tam giác ABD và EBD có:

BA = BE (gt)

\(\widehat{ABD}=\widehat{EBD}\) (Do BD là tia phân giác góc B)

BD chung

\(\Rightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)

\(\Rightarrow AD=ED\) (Hai cạnh tương ứng)

b)  Do \(\Delta ABD=\Delta EBD\left(cmt\right)\Rightarrow\widehat{BED}=\widehat{BAD}=90^o\)

Xét tam giác vuông ABC ta có \(\widehat{ABC}=90^o-\widehat{ACB}\)

Xét tam giác vuông DEC ta có \(\widehat{EDC}=90^o-\widehat{ACB}\)

Vậy nên \(\widehat{EDC}=\widehat{ABC}\)

c) Gọi giao điểm của AE và BD là I.

Xét tam giác ABI và tam giác EBI có:

AB = EB (gt)

\(\widehat{ABI}=\widehat{EBI}\)

BD chung

\(\Rightarrow\Delta ABI=\Delta EBI\left(c-g-c\right)\)

\(\Rightarrow\widehat{AIB}=\widehat{EIB}\) (Hai góc tương ứng)

Mà chúng lại ở vị trí kề bù nên \(\widehat{AIB}=\widehat{EIB}=90^o\)

Vậy nên \(AE\perp BD\)

8 tháng 2 2021

a) Xét tam giác ACE và tam giác AKE

có AE chung

góc CAE =góc KAE (GT)

góc ECA = góc EKA =900

suy ra tam giác ACE = tam giác AKE (cạnh huyền-góc nhọn) (1)

b) Từ (1) suy ra AC=AK suy ra A thuộc đường trung trực của CK  (2)

Từ (1) suy ra EK=EC suy ra E thuộc đường trung trực của CK  (3)

Từ(2) và (3) suy ra AE là  đường trung trực của CK

c) tam giác ABC vuông tại C, có góc CAB = 600

suy ra AC=AB:2 ( cạnh đối diện với góc 30 độ bằng nửa cạnh huyền)

mà AK=AC , AK +KB=AB

suy ra AK=AC=KB

d) tam giác BDE=tam giác BKE (cạnh huyền-góc nhọn)

(Câu này mình tìm thấy của Lê Thị Nhung ở h https://h.vn/vip/lethinhung262)

 Vì \(\Delta ABC\) cân tại A nên AB=AC (đ/n) và \(\widehat{ABC}=\widehat{ACB}\)

Xét \(\Delta EBC\)​  và \(\Delta DCB\)​  có : 

\(\widehat{EBC}=\widehat{DCB}\)

BC chung

\(\widehat{BEC}=\widehat{CDB}\) (=90o)

=> \(\Delta EBC\)=\(\Delta DCB\)(cgv-gnk)

=> BD=CE( cctư) (đpcm)

b) Vì \(\Delta EBC\)=\(\Delta DCB\)nên \(\widehat{IBC}=\widehat{ICB}\)(cgtư)

Xét\(\Delta IBC\)Có :\(\widehat{IBC}=\widehat{ICB}\)=> \(\Delta IBC\)cân=> IB=IC(đ/n)

c) Gọi giao điểm của AI và BC là O

Vì \(\widehat{ABC}=\widehat{ACB}\) và  \(\widehat{IBC}=\widehat{ICB}\) nên \(\widehat{ABI}=\widehat{ACI}\)

Xét  \(\Delta ABI\)​  và \(\Delta ACI\)​  có : 

AB=AC

\(\widehat{ABI}=\widehat{ACI}\)

IB=IC

=> \(\Delta ABI=\Delta ACI\left(c.g.c\right)\)

=> \(\widehat{BAI}=\widehat{CAI}\left(cgtư\right)\)

Xét  \(\Delta ABO\)​  và \(\Delta ACO\)​  có : 

AB=AC

\(\widehat{ABO}=\widehat{ACO}\)

\(\widehat{BAO}=\widehat{CAO}\)

=> \(\Delta ABO=\Delta ACO\left(c.g.c\right)\)

=> \(\widehat{BOA}=\widehat{COA}\left(cgtư\right)\)

mà \(\widehat{BOA}+\widehat{COA}=180^o\)

=> \(\widehat{BOA}=\widehat{COA}\left(=90^o\right)\)

hay AI\(\perp\)BC (đpcm)