Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEHF có \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: EF=AH
b: Ta có: AEHF là hình chữ nhật
nên Hai đườg chéo AH và FE cắt nhau tại trung điểm của mỗi đường
hay OA=OH;OE=OF
a) Xét tam giác AHB và tam giác AHC;có:
AH: cạnh chung
AB=AC ( tam giác ABC cân tại A )
góc AHB = góc AHC ( =90 độ )
-> tam giác AHB = tam giác AHC ( ch-gn )
-> HB = HC ( 2 cạnh tương ứng )
b) Ta có: HB = HC ( tam giác AHB = tam giác AHC )
-> HB = HC = BC/2 = 16/2 =8
Ta lại có: tam giác AHB vuông tại H
-> AB2 = AH2+HB2
-> 102 = AH2+82
-> AH2 = 102 - 82
-> AH2 = 100 - 64
-> AH2 = 36
-> AH = 6
a, Xét ∆ ABH và ∆AHC có:
+AH chung
+ ∠AHB= ∠AHC(=90*)
+AB=AC(△ ABC cân)
=> △AHB=△AHC(ch-cgv)
=>BH=HC(2 cạnh tương ứng)
b) Xét △ HEB và △HFC có:
+ ∠BEH= ∠CFH(=90*)
+HB=HC(cmt)
+ ∠B= ∠C(△ABC cân)
=> △HEB=△HFC(ch-cgnhon)