K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2016

vẽ hình nha bạn

ghi từng bài thui

a: Xet tứ giác ABDC có

M là trung điểm chung của AD và BC

góc BAC=90 độ

=>ABDC là hình chữ nhật

=>AC vuông góc CD

b: ΔABC vuông tại A

mà AM là trung tuyến

nên AM=BC/2

22 tháng 3 2023

đây là tứu giác mà bn

 

29 tháng 12 2023

a: Xét ΔMAC và ΔMDB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMDB

b: Xét ΔMEB và ΔMFC có

ME=MF

\(\widehat{BME}=\widehat{CMF}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMEB=ΔMFC

=>\(\widehat{MEB}=\widehat{MFC}\)

=>\(\widehat{MFC}=90^0\)

=>CF\(\perp\)AD

c: Xét tứ giác BFCE có

M là trung điểm chung của BC và FE

=>BFCE là hình bình hành

=>BF//CE và BF=CE

Ta có: BF//CE

B\(\in\)FG

Do đó: BG//CE

Ta có: BF=CE

BF=BG

Do đó: BG=CE
Xét tứ giác BGEC có

BG//EC

BG=EC

Do đó: BGEC là hình bình hành

=>BE cắt GC tại trung điểm của mỗi đường

mà H là trung điểm của BE

nên H là trung điểm của GC

=>G,H,C thẳng hàng

22 tháng 2 2018

a) xét tam giác ABM = DCM( c-g-c ) (*)

=) * góc BAD = góc ADC

=) AB // CD

    * AB = DC ( 1 )

xét tam giác ABH= EBH ( c-g-c )

=) AB = BE    ( 2 )

từ (1) và (2)=) CD=BE

b) ( đề sai, phải là CD vuông góc AC mới đúng )

từ (*) =) góc ABM = DCM

mà tg ABC vuông tại A=) ABM+ACB=90 độ

suy ra góc DCM+ACB=90 độ

=) CD vuông góc vs AC

c ) áp dụng trung tuyến cạnh huyền =) AM=1/2BC

d) Do AM = 1/2BC

=) BC = 10cm

áp dụng định lý py-ta-go cho tg ABC vuông tại A ta có:

AB^2 + AC^2 = BC^2

AB^2             = 36

AB                 = 6cm

14 tháng 12 2021

a) Xét tứ giác ACDB có:

+ M là trung điểm của BC (gt).

+ M là trung điểm của AD (MD = MA).
=> Tứ giác ACDB là hinhg bình hành (dhnb).

Mà ^BAC = 90o (Tam giác ABC vuông tại A).

=> Tứ giác ACDB là hình chữ nhật (dhnb).

=> AB // CD và CD \(\perp\) AC (Tính chất hình bình hành).

b) Trên tia đối của HA lấy E sao cho HE = HA (gt).

=> H là trung điểm của AE.

Xét tam giác CAE có:

+ CH là đường cao (CH \(\perp\) AE).

+ CH là đường trung tuyến (H là trung điểm của AE).

=> Tam giác CAE cân tại C.

=> CE = CA (Tính chất tam giác cân).

c) Ta có: CE = CA (cmt).

Mà CA = DB (Tứ giác ACDB là hình chữ nhật).

=> CE = DB (= CA).

d) Xét tam giác ADE có:

+ M là trung điểm của AD (MD = MA).

+ H là trung điểm của AE (gt).

=> MH là đường trung bình.

=> MH // DE (Tính chất đường trung bình trong tam giác).

Mà MH \(\perp\) AE (do AH \(\perp\) BC).

=> DE \(\perp\) AE (đpcm).