Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc C=180-60-80=40 độ
góc BAD=góc CAD=60/2=30 độ
góc ADB=180-80-30=70 độ
b: vì góc BAD<góc ADB<góc ABD
nên BD<AB<AD
c: góc ADC=180-70=110 độ
Vì góc ADC>góc C>góc DAC
nên AC>AD>CD
a: Xét ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
góc BAD=góc EAD
=>ΔABD=ΔAED
=>AB=AE
b: AB=AE
DB=DE
=>AD là trung trực của BE
hình tự vẽ nha
câu a) thầy cho rồi tự làm nha. Mình giải hai câu còn lại thôi
b) Ta có: tam giác ABC vuông tại A (gt) \(\Rightarrow\) AB vuông góc với AC
Mặt khác: DK vuông góc với AC (gt)
Vì AB vuông góc với AC (gt) và DK vuông góc với AC (gt) \(\Rightarrow\) AB // DK (định lý)
c) Ta có: BDK là góc ngoài của tam giác CDK.
Suy ra: BDK = DKC + DCK
BDK = 90O + 40O
BDK = 130O
Lưu ý: câu b ghi sai đề. phải là chứng minh DK // AB
a) Xét tam giác vuông ABC, ta có: \(\widehat{ACB}=90^o-\widehat{ABC}=90^o-60^o=30^o\)
b) Ta thấy góc \(\widehat{BAD}\) và \(\widehat{BAC}\) là hai góc kề bù, mà \(\widehat{BAC}=90^o\Rightarrow\widehat{BAD}=90^o\)
Xét hai tam giác vuông ABD và ABC có:
BA chung
DA = CA (gt)
\(\Rightarrow\Delta ABD=\Delta ABC\) (Hai cạnh góc vuông)
c) Do BE là tia phân giác góc ABC nên \(\widehat{ABE}=\widehat{CBE}=30^o\)
Do \(\Delta ABD=\Delta ABC\Rightarrow\hept{\begin{cases}DB=CB\\\widehat{DBA}=\widehat{CBA}=60^o\end{cases}}\)
\(\Rightarrow\widehat{DBE}=\widehat{DBA}+\widehat{ABE}=60^o+30^o=90^o\)
Do BA và CE cùng vuông góc với AC nên BC // CE. Vậy thì \(\widehat{BEC}=\widehat{ABE}=30^o\)
Xét tam giác BCE có: \(\widehat{BEC}=\widehat{CBE}=30^o\) nên nó là tam giác cân. Hay BC = CE
Từ đó ta có : DB = EC
Xét tam giác vuông DBE và ECD có:
DB = EC
DE chung
\(\Rightarrow\Delta DBE=\Delta ECD\) (Cạnh huyền cạnh góc vuông)
\(\Rightarrow BE=CD\)
Mà CD = CA + AD = 2AC
Vậy nên BE = 2AC.