K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2019

Tự vẽ hình nhé!

Từ C kẻ CH ⊥ AB => ΔABC vuông cân ở C có CH vừa là đường cao vừa là trung tuyến
Gọi giao điểm của CH và AM là G => G là trọng tâm ΔABC => CG/CH=2/3
ΔACD có AG⊥CD ; CH⊥AD => G là trực tâm ΔCAD -> GD ⊥ AC ->BC//GD
=>BD/BH=2/3 =>BD=2/3BH
=>HD=1/3BH
Mặt khác: AD=AH+HD=BH+1/3BH=4/3BH
=> AD/DB=(4/3BH)/(2/3BH)=2 => AD=2BD (đpcm)

10 tháng 2 2019

Giả sử CD cắt AM tại H 
Từ B kẻ đường thẳng vuông góc với AM tại P 
Ta có: 
tg CHM = tg BMP 
=> HM=MP 
Do BP// CD => AD/AB = AH/AP (*) 

Giả sử AC =a 
Mặt khác xét tg vuông ACM, đường cao CH ta có: 
1/CH^2 = 1/AC^2 + 1/CM^2 = 1/a^2 + 1/(a/2)^2 = 5/a^2 
=> CH^2 = a^2/5 
Do CH^2 = AH.HM 
=> AH.HM = a^2/5 (**) 
mà AC^2 = AH.AM =a^2 (***) 

Chia (**) và (***) => HM/AM = 1/5 
=> HM = AM/5 
=> HP/2 = (AP -MP)/5 = (AP -HP/2)/5 

=> HP = 1/3AP => AH = 2/3AP 
Từ (*) => AD/AB =2/3 => AD= 2AB/3 
=> DB= AB/3 
=> AD = 2BD

a: BC=15cm

=>AM=7,5cm

b: Xét tứ giác AEMF có góc AEM=góc AFM=góc FAE=90 độ

nên AEMF là hình chữ nhật

a: Xét ΔCKA vuông tại K và ΔCAM vuông tại A có

góc KCA chung

=>ΔCKA đồng dạng với ΔCAM

b: Xét ΔAKM vuông tại K và ΔABD vuông tại B có

góc KAM chung

=>ΔAKM đồng dạng với ΔABD

=>AK/AB=AM/AD

=>AK*AD=AB*AM

a: Xét ΔCKA vuông tại K và ΔCAM vuông tại A có

góc C chung

=>ΔCKA đồng dạng với ΔCAM

b: Xét ΔAMK vuông tại K và ΔADB vuông tại B có

góc MAk chung

=>ΔAMK đồng dạng với ΔADB

=>AM/AD=AK/AB

=>AM*AB=AD*AK

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K