Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
"First" , ZzZ_Tiểu Thư Họ Vương_ZzZ dễ thì giải, tôi cũng đang thắc mắc
"second", đường tròn tâm O bán kính BC hay đường kính BC ?
"third ", đã vẽ hình trực quan, và tam giác EBF ko cân, sao đây......
Tam giác EBF cân tại B nên HE = HF
Tam giác AEF vuông tại A có AH là đường trung tuyến ứng với cạnh huyền nên: HA = HE = HF = (1/2).EF (tính chất tam giác vuông)
Vậy tam giác AHF cân tại H.
Gọi I là giao điểm của AD và BC
Vì BC là đường trung trực của AD nên theo tính chất đường trung trực ta có:
BA = BD
Tam giác BAD cân tại B có BI ⊥ AD nên BI là tia phân giác của góc ABD
Tam giác EBF có BH là tia phân giác của góc EBF và BH ⊥ EF nên tam giác EBF cân tại B.
Xét \(\Delta ABK\),ta có: BE là phân giác \(\angle ABK,BE\bot AK\)
\(\Rightarrow\Delta ABK\) cân tại B \(\Rightarrow BE\) là trung trực AK
Xét \(\Delta ABD\) và \(\Delta KBD:\) Ta có: \(\left\{{}\begin{matrix}AB=BK\\BDchung\\\angle ABD=\angle KBD\end{matrix}\right.\)
\(\Rightarrow\Delta ABD\sim\Delta KBD\left(c-g-c\right)\Rightarrow\angle BKD=\angle BAD=90\)
Ta có: \(\angle BAD+\angle BKD=90+90=180\Rightarrow BAKD\) nội tiếp
\(\Rightarrow\angle AKD=\angle ABD=\angle KBD=\angle KAH\left(=90-\angle BKA\right)\)
\(\Rightarrow\)\(AI\parallel KD\)
Vì \(I\in BE\Rightarrow IA=IK\Rightarrow\Delta IAK\) cân tại I \(\Rightarrow\angle IKA=\angle IAK\)
BADK nội tiếp \(\Rightarrow\angle KAD=\angle KBD=\angle ABD=\angle AKD\)
\(\Rightarrow\angle IKA=\angle DAK\Rightarrow\)\(IK\parallel AD\Rightarrow AIKD\) là hình bình hành
mà \(IA=IK\Rightarrow IKDA\) là hình thoi
a: Xét (O) có
OI là một phần đường kính
AD là dây
OI\(\perp\)AD tại I
Do đó: I là trung điểm của AD
Xét ΔBAD có
BI là đường cao
BI là đường trung tuyến
Do đó: ΔBAD cân tại B
b: Xét (O) có
ΔABC nội tiếp
BC là đường kính
Do đó;ΔBAC vuông tại A
=>BA\(\perp\)EC
Xét tứ giác EHBA có
\(\widehat{EHB}+\widehat{EAB}=90^0+90^0=180^0\)
=>EHBA là tứ giác nội tiếp
=>E,H,A,B cùng thuộc 1 đường tròn
thế còn c,d đâu anh ??? hình vẽ ko có làm còn thiếu, có trách nhiệm với người hỏi đi anh
Do \(CA=CB=a\) nên \(BE.BC+AC.AK=a\left(AK+BE\right)\)
Ta chứng minh \(AK+BE\) không đổi. Thật vậy, gọi P là giao điểm của KE và AB. Quan sát thấy E là trực tâm tam giác ABK \(\Rightarrow KP\perp AP\) tại P. Lại có \(\widehat{KAP}=45^o\) nên suy ra \(\widehat{AKP}=45^o\). Từ đó suy ta tam giác CEK cân tại C hay \(CE=CK\).
Từ đó \(AK+BE=AC+CK+BC-CE=2a\). Vậy \(BE.BC+AC.AK=2a^2\) không đổi (đpcm)