Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
a) Xét 2 tg vuông BHA và CKB
có : BA = BC và
kéo dài CK cắt AB tại I ta có : g IBK = 90 - g BIK ( do tg IBK vuông tại K )
đồng thời tg IBC vuông tại B => g BCK = 90 - g BIK
==> g IBK = g BCK
nên tam giác BHA = tg CKB ==> BH = CK
b )
M là trung điểm của AC => BM vuông góc AC ( t/c tg cân )
tg AMB vuông tại M có g MAB = 45 độ nên vuông cân
=> MA = MB
tg MKB = tg MHB do có
MB = MA và BK = AH ( c/m a ) đồng thời
g MBK = g MAH ( cùng phụ với 2 góc đối đỉnh ở D )
==> MK = MH
g HMK = g HMA + AMK mà gHMK = g KMB ( do 2 tg bàng nhau vừa c/m )
nên g HMK = g KMB + g AMK = g AMB = 90 độ
==> MHK vuông cân
a) xét 2 tg vuông BHA và CKB
có : BA = BC và
kéo dài CK cắt AB tại I ta có : g IBK = 90 - g BIK ( do tg IBK vuông tại K )
đồng thời tg IBC vuông tại B => g BCK = 90 - g BIK
==> g IBK = g BCK
nên tg BHA = tg CKB ==> HB = CK
b )
M là trung điểm của AC => BM vuông góc AC ( t/c tg cân )
tg AMB vuông tại M có g MAB = 45 độ nên vuông cân
=> MA = MB
tg MKB = tg MHB do có
MB = MA và BK = AH ( c/m a ) đồng thời
g MBK = g MAH ( cùng phụ với 2 góc đối đỉnh ở D )
==> MK = MH
g HMK = g HMA + AMK mà gHMK = g KMB ( do 2 tg bàng nhau vừa c/m )
nên g HMK = g KMB + g AMK = g AMB = 90 độ
==> MHK vuông cân
c) ta có
đường vuông góc CK < đường xiên CD => CK lớn nhất khi K trùng với D , lúc đó CK = CD
tuơng tự AH lớn nhất khi H trùng với D , lúc đó AH = AD
=> tổng lớn nhất khi khi K, H , D trùng nhau
==> g MAH = 0 độ ( do D thuộc AC)
nhưng theo c/m b
g MAH = g MBK ==> g MBK = 0 độ
==> g MBD = 0 độ nên D trùng với M
kết luận : để tổng lớn nhất thì nằm ngay vị trí của điểm M
lúc đó AH + CK = AC
a. Ta có: góc ABH = góc KAC (cùng phụ góc BAH)
Xét tam giác BAH và tam giác ACK có:
AB=AC
góc ABH = góc CAK
góc BHA = góc AKC (=90độ)
=> tam giác BAH = tam giác ACK (cạnh huyền - góc nhọn)
=> AH=CK
xin lỗi tôi ko biết
ai mik lại
ai duyệt mình duyệt lại
ai đúng mình dừng lại
chon a,b,c
ai tivk vho minh mk khac k lai !