Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé !
* Ta có : AB2 = AC2 + BC2
AB2 = 0,9 + 1,2 = 2,1
==> AB ~ 1,5 (m)
sinB = AC/AB = 0,9/1,5 = 0,6
CosB= BC/AB = 1,2/1,5=0,8
tanB= AC/BC = 0,9/1,2=0,75
cotB= BC/AC=1,2/0,9=1,3
A B C 0,9 1,2
Ta có AC vg AB
\(BC^2\) = \(AC^2\)+ \(AB^2\)
Hay \(BC^2\) = \(0,9^2\)+ \(1,2^2\)
\(BC^2\)= \(2,25\)
=> \(BC\) = \(\sqrt{2,25}\) = \(1,5\)cm
\(\sin\widehat{B}\)= \(\frac{AC}{AB}\)=\(\frac{0,9}{1,5}\)= \(0,6\)
\(\cos\widehat{B}\)= \(\frac{BC}{AB}\)=\(\frac{1,2}{1,5}\)= \(0,8\)
\(\tan\widehat{B}\)= \(\frac{AC}{BC}\)= \(\frac{0,9}{1,2}\)= \(0,75\)
\(\cot\widehat{B}\)= \(\frac{BC}{AC}\)= \(\frac{1,2}{0,9}\)= \(\frac{4}{3}\)
\(\sin\widehat{C}\)= \(\cos\widehat{B}\)= \(0,8\)
\(\cos\widehat{C}\)= \(\sin\widehat{B}\)= \(0,6\)
\(\tan\widehat{C}\)= \(\cot\widehat{B}\)= \(\frac{4}{3}\)
\(\cot\widehat{C}\)= \(\tan\widehat{B}\)= \(0,75\)
ABCM
a) Trong tam giác ABC có: \(\widehat{A}+\widehat{B}+\widehat{C}=180\Rightarrow100+\widehat{B}+\widehat{C}=180\Rightarrow\widehat{B}+\widehat{C}=80\)
b) Do: \(\widehat{ABC}+\widehat{ACB}=80\Rightarrow\frac{1}{2}\widehat{ABC}+\frac{1}{2}\widehat{ACB}=40\)
Mà: \(\widehat{MCB}=\frac{1}{2}\widehat{ACB};\widehat{MBC}=\frac{1}{2}\widehat{ABC}\)
\(\Rightarrow\widehat{MCB}+\widehat{MBC}=\frac{1}{2}\widehat{ACB}+\frac{1}{2}\widehat{ABC}\Rightarrow\widehat{MCB}+\widehat{MBC}=40\)
Mặt khác: Trong tam giác MBC có: \(\widehat{MBC}+\widehat{MCB}+\widehat{CMB}=180\Rightarrow40+\widehat{CMB}=180\Rightarrow\widehat{CMB}=140\)
vì E nằm trong tam giác nê góc ABE < gócABC => ABE < 45 độ
trong tam giác ABE có
gócAEB = 180 - ( BAE + ABE) = 180 - 75 - ABE= 105 - ABE >105 - 45 = 60 độ ( tự tính góc BAE nhé)
do đó ta dựng tam giác đều DAB sao cho hai điểm D và B cùng thuộc một nửa mặt phảng bờ AE.
xét tam giác ADB và tam giác AEC có AB = AC (gt); BAD = CAE = 15 độ ( tự tính góc BAD); AD = AE ( tg ADE đều) => tg ADB = tg AEC ( c,g,c) => góc ADB = góc AEC ( hai góc tương ứng)
=> góc ADB = 150 độ ( vì AEC = 150 Tự tính nhé)
Lại có góc ADB + góc BDE + góc ADE = 360 độ hay 150 độ + BDE + 60 độ = 360 độ
=> góc BDE = 150 độ.
tg ADB và tg EDB có AD = DE ( tg ADE đều); ADB = EDB = 150 độ; BD là cạnh chung
=> tg ADB = tg EDB ( c, g, c)
=> góc DEB = góc BAD = 15 độ
mà AEB = AED +DEB = 60 + 15 = 75 độ