K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2018

Bạn vui lòng tự vẽ hình giùm.

a) Tính độ dài BC.

Ta có \(\Delta ABC\)vuông tại A => BC2 = AB2 + AC2 (định lí Pitago) (1)

Mà AB = AC (\(\Delta ABC\)cân tại A) => AB2 = AC2 (2)

Từ (1) và (2) => BC2 = 2AB2

=> BC2 = 2. 42 = 32

=> BC = \(\sqrt{32}\)(vì BC > 0)

b) CM: D là trung điểm của BC

\(\Delta ADB\)vuông và \(\Delta ADC\)vuông có: AB = AC (\(\Delta ABC\)cân tại A)

Cạnh AD chung

=> \(\Delta ADB\)vuông = \(\Delta ADC\)vuông (cạnh huyền - cạnh góc vuông) => DB = DC (hai cạnh tương ứng) => D là trung điểm của BC (đpcm)

9 tháng 4 2020

* Hình bạn tự vẽ xD *

a) Ta có : Tam giác ABC vuông cân tại A

=> AB2 + AC2 = BC2 ( Đ.lí Pytago )

=> 42 + 42 = BC2

=> 16 + 16 = BC2

=> 32 = BC2

=> BC = \(\sqrt{32}cm\)

b) Vì tam giác ABC là tam giác vuông cân tại A => Góc B = góc C ( hai góc ở đáy )

Xét tam giác vuông ADB và tam giác vuông ADC có :

AB = AC ( gt )

B = C ( cmt )

=> Tam giác vuông ADB = tam giác vuông ADC ( cạnh huyền - góc nhọn )

=> DB = DC ( hai cạnh tương ứng )

=> D là trung điểm của BC

( Đến đây thì mình bí r xD )

28 tháng 4 2018

(Bạn tự vẽ hình giùm)

a/ Ta có BA = BD (gt)

nên \(\Delta BAD\)cân tại B

=> \(\widehat{BAD}=\frac{180^o-\widehat{B}}{2}\)

=> \(\widehat{BAD}=\frac{180^o-60^o}{2}\)

=> \(\widehat{BAD}=\widehat{BDA}=60^o=\widehat{B}\)

=> \(\Delta BAD\)đều (đpcm)

b/ \(\Delta ABI\)và \(\Delta DBI\)có: AB = DB (gt)

\(\widehat{ABI}=\widehat{IBD}\)(BI là tia phân giác \(\widehat{B}\))

Cạnh BI chung

=> \(\Delta ABI\)\(\Delta DBI\)(c. g. c) => \(\widehat{A}=\widehat{BDI}=90^o\)(hai cạnh tương ứng)

và AI = DI (hai cạnh tương ứng)

=> BI = IC (quan hệ giữa đường xiên và hình chiếu)

nên \(\Delta BIC\)cân tại I (đpcm)

c/ Ta có \(\Delta BIC\)cân tại I (cmt)

=> Đường cao ID cũng là đường trung tuyến của \(\Delta BIC\)

=> D là trung điểm BC (đpcm)

d/ Ta có \(\Delta ABC\)vuông tại A

=> BC2 = AB2 + AC2 (định lý Pythagore)

=> AB2 + AC2 = 26= 676

và \(\frac{AB}{AC}=\frac{5}{2}\)=> \(\frac{AB}{5}=\frac{AC}{2}\)=> \(\frac{AB^2}{25}=\frac{AC^2}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{AB^2}{25}=\frac{AC^2}{4}=\frac{AB^2+AC^2}{25+4}=\frac{676}{29}\)

=> \(\hept{\begin{cases}\frac{AB}{5}=\frac{676}{29}\\\frac{AC}{2}=\frac{676}{29}\end{cases}}\)=> \(\hept{\begin{cases}AB=\frac{676}{29}.5\\AC=\frac{676}{29}.2\end{cases}}\)=> \(\hept{\begin{cases}AB=\frac{3380}{29}\left(cm\right)\\AC=\frac{1352}{29}\left(cm\right)\end{cases}}\)

15 tháng 5 2018

a)vì tam giác ABC cân tại A

=>AB=AC và góc ABC=góc ACB

xét tam giác ABM và tam giác ACM có

góc AMB=góc AMC(= 90 độ)

AB=AC

góc ABM=góc ACM

=>tam giác ABM = tam giác ACM (c/h-g/n)

=>MB=MC(2 cạnh tương ứng)

b)ta có BC=24

mà MB=MC

=>M là trung điểm của BC

=>BM=MC=24/2=12 cm

xét tam giác ABM vuông tại M,áp dụng định lý PY-ta go ta có:

\(AB^2=AM^2+BM^2\)

\(AM^2=AB^2-BM^2\)

\(AM^2=20^2-12^2\)

\(AM^2=400-144\)

AM^2=256

=>AM=16 cm

c)vì tam giác ABM = tam giác ACM(cmt)

=>góc BAM=góc CAM(2 góc tương ứng)

xét tam giác HAM và tam giác KAM có

góc AHM = góc AKM(= 90 độ)

cạnh AM chung

góc BAM=góc CAM

=>tam giác HAM = tam giác KAM(c/h-g/n)

=>AH=AK(2 cạnh tương ứng)

=>tam giác AHK cân tại A

d)mình không biết làm phàn này nha

26 tháng 2 2018

a) Ta thấy do tam giác ABD vuông nên \(\widehat{DBA}+\widehat{DAB}=90^o\)

Lại có \(\widehat{EAC}+\widehat{DAB}+\widehat{BAC}=180^o\Rightarrow\widehat{EAC}+\widehat{DAB}=90^o\)

Suy ra \(\widehat{DBA}=\widehat{EAC}\)

Xét tam giác vuông DBA và tam giác vuông EAC có:

BA = AC (Do ABC là tam giác cân tại A)

\(\widehat{DBA}=\widehat{EAC}\)  (cmt)

\(\Rightarrow\Delta DBA=\Delta EAC\)  (Cạnh huyền góc nhọn)

b) Do tam giác ABC vuông cân tại A nên \(\widehat{ABC}=45^o\) và trung tuyến AM đồng thời là đường cao.

Xét tam giác vuông AMB có \(\widehat{ABM}=45^o\) nên nó là tam giác vuông cân. Hay MB = MA.

c) Ta có AM là trung tuyến của tam giác cân nên đồng thời là phân giác.

Vậy thì \(\widehat{MAC}=45^o\)

\(\Rightarrow\widehat{DBM}=\widehat{DBA}+\widehat{ABM}=\widehat{EAC}+\widehat{CAM}=\widehat{EAM}\)

Do \(\Delta DBA=\Delta EAC\Rightarrow DB=EA\)

Suy ra \(\Delta DBM=\Delta EAM\left(c-g-c\right)\Rightarrow\widehat{BMD}=\widehat{AME};MD=ME\)

Từ đó ta có: \(\widehat{DME}=\widehat{DMA}+\widehat{AME}=\widehat{DMA}+\widehat{BMD}=\widehat{BMA}=90^o\)

Vậy nên tam giác DME vuông cân tại M.

28 tháng 3 2020

22 tháng 1 2019 lúc 12:58

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)

b) Ta có: ΔABD=ΔEBD(cmt)

nên DA=DE(hai cạnh tương ứng)

Xét ΔDAE có DA=DE(cmt)

nên ΔDAE cân tại D(Định nghĩa tam giác cân)

c) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=8^2+6^2=100\)

hay BC=10(cm)

Chu vi tam giác ABC là:

\(C_{ABC}=AB+BC+AC=8+6+10=24\left(cm\right)\)

Sửa đề: cắt AB tại D.

a) Sửa đề: ΔACD=ΔECD

Xét ΔACD vuông tại A và ΔECD vuông tại E có

CD chung

\(\widehat{ACD}=\widehat{ECD}\)(CD là tia phân giác của \(\widehat{ACE}\))

Do đó: ΔACD=ΔECD(Cạnh huyền-góc nhọn)

b) Ta có: ΔACD=ΔECD(cmt)

nên DA=DE(Hai cạnh tương ứng)

Xét ΔDAE có DA=DE(cmt)

nên ΔDAE cân tại D(Định nghĩa tam giác cân)

 

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Ta có: ΔABC cân tại A

mà AM là trung tuyến

nên AM là đường cao

BC=12cm nên BM=6cm

=>AM=8(cm)

c: I cách đều ba cạnh nên I là giao điểm của ba đường phân giác

=>AI là phân giác của góc BAC

mà AM là phân giác của góc BC

nên A,I,M thẳng hàng

19 tháng 4 2019

a) Xét t/g ABD và t/g HBD có:

AB = BH (gt)

ABD = HBD ( vì BD là phân giác ABC)

BD là cạnh chung

Do đó, t/g ABD = t/g HBD (c.g.c)

=> BAD = BHD = 90o (2 góc tương ứng)

=> DH _|_ BC (đpcm)

b) t/g ABD = t/g HBD (câu a)

=> ADB = HDB (2 góc tương ứng)

Mà ADB + HDB = ADH = 110o

Do đó, ADB = HDB = 110o : 2 = 55o

t/g ABD vuông tại A có: ABD + ADB = 90o

=> ABD + 55o = 90o

=> ABD = 90o - 55o = 35o

k nhé

19 tháng 4 2019

mình lm nhầm nhé