Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chi oi,kho qua em ko bit lam,k em nhe,hom nay em k chi qua 3 lan rui do
a) Ta có : CE ⊥ d
BD ⊥ d
\(\Rightarrow\)CE // BD (ĐPCM)
b) Xét △CEA và △ADB có :
AC = AB
\(\widehat{EAC}=\widehat{ABD}\)(cùng phụ với \(\widehat{DAB}\))
\(\Rightarrow\) △CEA = △ADB (cạnh huyền-góc nhọn)
c) Có △CEA = △ADB
\(\Rightarrow\hept{\begin{cases}BD=AE\\CE=AD\end{cases}}\)(Cặp cạnh tương ứng)
\(\Rightarrow\)BD + CE = AE + AD = DE (ĐPCM)
d) △ABC vuông tại A có AM là trung tuyến
\(\Rightarrow\)AM = BM = CM
\(\Rightarrow\)△ABM cân tại M
Có : \(\widehat{ECA}=\widehat{BAD}\)(△CEA = △ADB)
\(\widehat{ACB}=\widehat{ABC}\) (△ABC cân tại A)
\(\Rightarrow\widehat{ECA}+\widehat{ACB}=\widehat{BAD}+\widehat{ABC}\)
Mà \(\widehat{ABC}=\widehat{MAB}\)(△MAC cân tại M)
\(\Rightarrow\widehat{ECA}+\widehat{ACB}=\widehat{BAD}+\widehat{MAB}\)
\(\Rightarrow\widehat{ECM}=\widehat{MAD}\)
Xét △ADM và △CEM có :
EC = AD
\(\widehat{ECM}=\widehat{MAD}\)
AM = CM
\(\Rightarrow\)△ADM = △CEM (c-g-c) (ĐPCM)
\(\Rightarrow\)EM = MD (Cặp cạnh tương ứng) (1)
Có : \(\widehat{EMA}+\widehat{EMC}=90^o\)
\(\widehat{EMC}=\widehat{DMA}\)(△ADM = △CEM)
\(\Rightarrow\widehat{EMA}+\widehat{DMA}=90^o\)
\(\Rightarrow\widehat{EMD}=90^o\)(2)
Từ (1) và (2) suy ra △DME vuông cân tại M.
a) Ta có BD và CE đều vuông góc với d
Nên góc CEA=góc BDA (=90 độ)
Mà 2 góc này ở vị trí đồng vị
Nên BD//CE
b) Ta có d// BC
---------> góc ECB=góc DBC=góc CED ( =90 dộ )
Nên ECDB là HCN
Mà ABC là vuông cân nên góc ECA=góc DBA= 45 độ
-------->tam giác CEA = tam giác DBA ( cạnh huyền góc nhọn)
c)( mình lười bấm quá nên mình làm tắt nha)
Chứng minh góc CAE= góc BAD ( do góc ECA= góc DBA và góc ACB=góc EAC=45 độ do ED//BC)
Nên CE=EA và DB=AD, mặt khác AE=AC ( do 2 tam giác bằng nhau cm câu b)
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD