Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có ^ABH + ^BAH = 90° Măt khác ^CAH + ^BAH = 90°
=> ^ABH = ^CAH
Xét ▲ABH và ▲CAK có:
^H = ^C (= 90°)
AB = AC (T.g ABC vuông cân)
^ABH = ^CAH (cmt)
=> △ABH = △CAK (c.h-g.n)
=> BH = AK
b) Ta có BH//CK (Cùng ┴ AK)
=>^HBM = ^MCK (SLT)(1)
Mặt khác ^MAE + ^AEM = 90°(2)
Và ^MCK + ^CEK = 90°(3)
Nhưng ^AEM = ^CEK (đ đ)(4)
Từ 2,3,4 => ^MAE = ^ECK (5)
Từ 1,5 => ^HBM = ^MAE
Ta lại có AM là trung tuyến của tam giác vuông ABC nên AM = BM =MC = 1/2 BC
Xét ▲MBH và ▲MAK có:
MB = AM (cmt); ^HBM = ^MAK(cmt); BH = AK (cma)
=> △MBH = △MAK (c.g.c)
c) Theo câu a, b ta có: AH = CK; MH = MK; AM = MC nên : ▲AMH = ▲ CMK (c.c.c)
=> ^AMH = ^CMK; mà ^AMH + ^HMC = 90 độ
=> ^CMK + ^HMC = 90° hay ^HMK = 90°
Tam giác HMK có MK = MH và ^HMK = 90° nên vuông cân tại M (đpcm).
Chúc bạn học tốt!
Bạn tham khảo tại link này nhé
https://h.vn/hoi-dap/question/192990.html
Câu hỏi của Lê Thị Thùy Dung - Toán lớp 7 | Học trực tuyến
a) Ta có ^ABH + ^BAH = 90° Măt khác ^CAH + ^BAH = 90°
=> ^ABH = ^CAH
Xét ▲ABH và ▲CAK có:
góc H = góc C (= 90°)
AB = AC (T.g ABC vuông cân)
góc ABH = góc CAH (cmt)
=> △ABH = △CAK (c.h-g.n)
=> BH = AK
b) Ta có BH//CK (Cùng ┴ AK)
=>góc HBM = góc MCK (So Le Ttrong)(1)
Mặt khác góc MAE + góc AEM = 90°(2)
Và góc MCK + góc CEK = 90°(3)
Và góc AEM = góc CEK (4)
Từ 2,3,4 => góc MAE = góc ECK (5)
Từ 1,5 => góc HBM = góc MAE
Ta lại có AM là trung tuyến của tam giác vuông ABC nên AM = BM =MC = 1/2 BC
Xét tam giác MBH và tam giác MAK có:
MB = AM (cmt)
góc HBM = góc MAK(cmt)
BH = AK (cmt)
=> △MBH = △MAK (c.g.c)
c) Theo câu a, b ta có: AH = CK; MH = MK; AM = MC nên tam giác AMH = tam giác CMK (c.c.c)
=> góc AMH = góc CMK; mà góc AMH + góc HMC = 90 độ
=> góc CMK + góc HMC = 90° hay góc HMK = 90°
Tam giác HMK có MK = MH và góc HMK = 90° nên vuông cân tại M (đpcm).
câu a/
xét tam giác ABH và CAK có:
góc AHB=góc AEC=90;AB=AC;góc ABH=góc CAE(cùng phụ với góc BAE)
=> tam giác ABH=CAK(cạnh huyền- góc nhọn)=>BH=AK
câu b/
tam giác ABC vuông cân; M là trung điểm của BC=>AM=BM=CM
xét tam giác BMH và AMK có
góc MBH=MAK(cùng phụ với góc BEH); BH=AK(cmt); BM=AM(cmt)
=>tam giác bằng nhau
Câu c/
theo câu b/ => MH=MK(2 cạnh tương ứng)(1)
Xét tam giác AHM và CEM có
AH=CE(tam giác ABH=CEK); MH=MK(cmt); AM=MC(cmt)
=> tam giác bằng nhau=>góc AMH= góc CMK
mà góc AMH+góc EMH=90
=>góc HME+gócCMK=90
=>góc HMK=90(2)
từ (1)(2)=> tam giác MHK vuông cân
Tgiac ABC vuông cân tại A => AB = AC
Xét tgiac ACK vuông tại K => góc ACK + KAC = 90 độ
Lại có KAC + BAH (BAK) = BAC = 90 độ
=> góc KCA = BAH
Xét tgiac BAH và ACK có:
+ AB = AC
+ góc AHB = AKC = 90 độ
+ góc KCA = BAH (cmt)
=> tgiac BAH = ACK (ch-gn)
=> BH = AK (đpcm)