Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M O I x
Trên nửa mặt phẳng bờ AC không chứa điểm B vẽ ^CAx=^OAB. Trên Ax lấy điểm I sao cho AO=AI
Nối I với O và C.
Xét \(\Delta\)AMB và \(\Delta\)AMC:
AB=AC
AM chung => ^MAB < ^MAC hay ^OAB < ^OAC
MB<MC
Mà ^OAB=^IAC => ^IAC < ^OAC
Xét \(\Delta\)AIC và \(\Delta\)AOC:
Cạnh AC chung
^IAC < ^OAC => IC < OC
AI=AO
Xét \(\Delta\)OCI có: IC < OC => ^OIC > ^IOC (1)
Ta có: Tam giác OAI: AO=AI => \(\Delta\)OAI cân tại A => ^AIO=^AOI (2)
Từ (1) và (2) => ^OIC+^AIO > ^IOC+^AOI => ^AIC > ^AOC (3)
Sau đó c/m \(\Delta\)AOB=\(\Delta\)AIC (c.g,c) => ^AIC=^AOB (4)
Từ (3) và (4) => ^AOB > ^AOC (đpcm).
Vẽ tam giác MAD vuông cân tại A ( D và M nằm khác phía đối với AC), nối D với C
Bài làm
ta có: tam giác MAD vuông cân tại A
=> MA = AD ( tính chất tam giác vuông cân) => MA2 = AD2
góc AMD = góc ADM = 45 độ
mà \(\widehat{AMD}+\widehat{DMC}=\widehat{AMC}\)
thay số: 45 độ + góc DMC = 135 độ
góc DMC = 135 độ - 45 độ
góc DMC = 90 độ
\(\Rightarrow DM\perp MC⋮M\) ( định lí vuông góc)
Xét tam giác MAD vuông cân tại A
có: \(MA^2+AD^2=DM^2\left(py-ta-go\right)\)
\(\Rightarrow MA^2+MA^2=DM^2\)
2.MA2 = DM2
Xét tam giác DCM vuông tại M
có: \(DM^2+MC^2=CD^2\left(py-ta-go\right)\)
=> 2.MA2 + MC = CD2
\(\Rightarrow MA^2=\frac{CD^2-MC^2}{2}\) (1)
ta có: \(\widehat{BAM}+\widehat{MAC}=90^0\left(=\widehat{BAC}=90^0\right)\)
và \(\widehat{MAC}+\widehat{CAD}=90^0\left(=\widehat{MAD}=90^0\right)\)
\(\Rightarrow\widehat{BAM}+\widehat{MAC}=\widehat{MAC}+\widehat{CAD}\left(=90^0\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{CAD}\)
Xét tam giác ABM và tam giác ACD
có: AB = AC (gt)
góc BAM = góc CAD (cmt)
AM = AD ( tam giác MAD vuông cân tại A)
\(\Rightarrow\Delta ABM=\Delta ACD\left(c-g-c\right)\)
=> MB = CD ( 2 cạnh tương ứng)
=> MB2 = CD2 (2)
Từ (1);(2) \(\Rightarrow MA^2=\frac{MB^2-MC^2}{2}\)
a, vì M nằm ở trong tam giác ABC nên MC và MB nằm ở trong tam giác ABC
=) MC va MB lần lượt chia góc C và B làm 2 nửa
=) ^B = ^B1+ ^B2 ^C= ^C1+^C2
theo quan hệ giứa góc và cạnh đối diên có
ab tương ứng vs góc C, ac tương ứng vs góc B
MB .........................C1, MC B2
CÓ : ^B+^C > ^B2+^C2
=) AB+AC > MB+MC ( THEO QUAN HỆ GIỮA GÓC VÀ CẠNH ĐỐI DIỆN)
CON B THÌ CHỊU NHÉ
A B C M
a) Làm như bạn ly
b)Từ câu a) suy ra MB + MC < AB + AC;MA+MB < AC + BC
MA + MC < AB + BC
Cộng theo vế suy ra: \(2\left(MA+MB+MC\right)< 2\left(AB+BC+CA\right)\)
Suy ra \(MA+MB+MC< AB+BC+CA\) (1)
Mặt khác,áp dụng BĐT tam giácL
MB + MC > BC.Tương tự với hai BĐT còn lại và cộng theo vế: \(2\left(MA+MB+MC\right)>AB+BC+CA\)
Chia hai vế cho 2: \(MA+MB+MC>\frac{AB+BC+CA}{2}\)
Câu 1:
Xét tam giác AMB và tam giác AMC ta có:
AB = AC (tam giác ABC cân tại A)
ABM = ACM (tam giác ABC cân tại A)
=> Tam giác AMB = tam giác AMC (ch-gn) (dpcm)
Câu 2:
a) Ta có: +) AK+KB = AB => KB = AB-AK
+) AH+HC = AC => HC = AC-AH
Mà AB=AC(tam giác ABC cân tại A) ; AK=AH (gt)
=>KB=HC
Xét tam giác BHC và tam giác CKB ta có:
HC=KB (cmt)
HCB=KBC (tam giác ABC cân tại A)
BC là cạnh chung
=>tam giác BHC = tam giác CKB (c.g.c)
=>BH=CK (2 cạnh tương ứng) (dpcm)
Xét tam giác ABH và tam giác ACK ta có:
AB=AC (tam giác ABC cân tại A)
BH=CK (cmt)
AH=AK (gt)
=> tam giác ABH = tam giác ACK (c.c.c)
=> ABH = ACK (2 góc tương ứng) (dpcm)
b) Theo a) tam giác BHC= tam giác CKB
=> HBC=KCB (2 góc tương ứng) hay OBC=OCB
=> Tam giác OBC là tam giác cân tại O (dpcm)
c) Theo b tam giác OBC cân tại O => OB=OC
Theo a góc ABH = góc ACK => KBO= HCO
Xét tam giác OKB và tam giác OHC ta có:
KB=HC (theo a)
KBO=HCO (cmt)
OB=OC (cmt)
=> tam giác OKB = tam giác OHC (c.g.c)
=> OK = OH (2 cạnh tương ứng) hay tam giác OKH là tam giác cân tại O (dpcm)
d) Gọi giao điểm của AO và KH là I
Xét tam giác AKO và tam giác AHO ta có:
AK=AH (gt)
AO là cạnh chung
OK=OH (theo c)
=> tam giác AKO = tam giác AHO (c.c.c)
=> KAO = HAO (2 góc tương ứng) hay KAI=HAI
Xét tam giác KAI và tam giác HAI ta có:
AK=AH (gt)
KAI=HAI (cmt)
AI là cạnh chung
=> tam giác KAI = tam giác HAI ( c.g.c)
=> KI=HI , mà I nằm giữa H và K
=> I là trung điểm của KH hay
AO đi qua trung điểm của KH (dpcm)
Lời giải:
1.
Xét tam giác $ABH$ và $ACH$ có:
$AH$ chung
$AB=AC$ (do $ABC$ cân tại $A$)
$BH=CH$ (do $H$ là trung điểm của $BC$)
$\Rightarrow \triangle ABH=\triangle ACH$ (c.c.c)
$\Rightarrow \widehat{AHB}=\widehat{AHC}$
Mà $\widehat{AHB}+\widehat{AHC}=\widehat{BHC}=180^0$
$\Rightarrow \widehat{AHB}=\widehat{AHC}=90^0$
$\Rightarrow AH\perp BC$
2. Dễ thấy $ME\parallel DA, MD\parallel AE$
Xét tam giác $ADM$ và $MEA$ có:
$\widehat{DAM}=\widehat{EMA}$ (so le trong)
$\widehat{DMA}=\widehat{EAM}$ (so le trong)
$MA$ chung
$\Rightarrow \triangle ADM=\triangle MEA$ (g.c.g)
$\Rightarrow DM=EA(1), AD=ME$
Do $ABC$ là tam giác vuông cân nên $\widehat{B}=45^0$
Tam giác $BDM$ vuông tại $D$ có góc $\widehat{B}=45^0$ nên là tam giác vuông cân. $\Rightarrow BD=DM(2)$
Từ $(1);(2)\Rightarrow BD=AE$
Mà $AB=AC\Rightarrow AB-BD=AC-AE\Leftrightarrow AD=EC$ (đpcm)
3.
Áp dụng định lý Pitago cho các tam giác vuông:
$MB^2+MC^2=(BD^2+DM^2)+(ME^2+EC^2)$
$=(DM^2+DM^2)+(AD^2+AD^2)=2(DM^2+AD^2)=2AM^2$ (đpcm)
kẻ thêm đường cao AH rồi áp dụng định lý Pythagoras.