\(MB^2\) + 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

Từ MM kẻ MEME vuông góc với ABAB, MFMF vuông góc với ACAC.

Ta có ΔEBMΔEBM vuông cân tại EE, ΔFMCΔFMC vuông cân tại FF và AEMFAEMF là hình chữ nhật.

Áp dụng định lý PytagoPytago vào các tam giác EBM,FMC,AEFEBM,FMC,AEF, ta có:

BM2=EM2+BE2=2ME2;MC2=2FM2⇒BM2+MC2=2(ME2+MF2)BM2=EM2+BE2=2ME2;MC2=2FM2⇒BM2+MC2=2(ME2+MF2)                (1)

Mà AM2=EF2=ME2+MF2AM2=EF2=ME2+MF2             (2)

Từ (1),(2)(1),(2) ta có dpcmdpcm

Ozx6MO0.jpg

24 tháng 9 2017

Từ MM kẻ ME vuông góc với ABAB, MFMF vuông góc với ACAC.

Ta có ΔEBM vuông cân tại E, ΔFMC vuông cân tại F và AEMF là hình chữ nhật.

Áp dụng định lý Pytago vào các tam giác EBM,FMC,AEF, ta có:

BM2=EM2+BE2=2ME2;MC2=2FM2⇒BM2+MC2=2(ME2+MF2)BM2=EM2+BE2=2ME2;MC2=2FM2⇒BM2+MC2=2(ME2+MF2)                (1)

Mà AM2=EF2=ME2+MF2AM2=EF2=ME2+MF2             (2)

Từ (1),(2)(1),(2) ta có dpcm

Ozx6MO0.jpg

1 tháng 12 2017

a) Ta có \(AM=AC-MC=AC-MB=b-d\)

Xét tam giác vuông ABM, theo định lý Pi-ta-go ta có:

\(c^2+\left(b-d\right)^2=d^2\Leftrightarrow c^2+b^2-2bd+d^2=d^2\)

\(\Leftrightarrow c^2+b^2-2bd=0\)

Mà tam giác ABC vuông tại A nên \(b^2+c^2=a^2\)

\(\Rightarrow a^2=2bd\Rightarrow4bc=2bd\Rightarrow d=2c\left(đpcm\right)\)

b) Xét tam giác vuông ABM có \(BM=2BA\Rightarrow\widehat{ABM}=60^o\Rightarrow\widehat{AMB}=36^o\)

Xét tam giác cân MBC có \(\widehat{AMB}\) là góc ngoài tại đỉnh cân nên \(\widehat{AMB}=2\widehat{MBC}=2\widehat{MCB}\)

\(\Rightarrow\widehat{MCB}=\widehat{MBC}=\frac{30^o}{2}=15^o\)

Vậy nên \(\widehat{ABC}=\widehat{ABM}+\widehat{MBC}=60^o+15^o=75^o\)

\(\widehat{ACB}=\widehat{MCB}=15^o\)

24 tháng 2 2022

lkjytreedfyhgfdfgff

24 tháng 2 2022

lkjhgfgy6tyur65445676t 7 777676r64576556756777777777777/.,mnbvfggjhyjuhjtyj324345

14 tháng 7 2019

1)

gọi I là giao điểm của BD và CE

ta có E là trung điểm cua AB nên EB bằng 3 cm

xét △EBI có \(\widehat{I}\)=900 

EB2 = EI2 + BI2 =32=9             (1)

tương tự IC2 + DI2 = 16            (2)

lấy (1) + (2) ta được

EI2+DI2+BI2+IC2=25

⇔ ED2+BC2=25

xét △ABC có E là trung điểm của AB và D là trung điểm của AC

⇒ ED là đường trung bình của tam giác

⇒ 2ED =BC

⇔ ED2=14BC2

⇒ 14BC2+BC2=25

⇔ 54BC2=25

⇔ BC2=20BC2=20

⇔ BC=√20

31 tháng 7 2019

Ta có: \(S_{AHC}=\frac{AH.AC}{2}=96\left(cm^2\right)\Rightarrow AH.AC=192cm\)(1)

\(S_{ABH}=\frac{AH.BH}{2}=54\left(cm^2\right)\Rightarrow AH.BH=108cm\)(2)

Từ (1) và (2) \(\Rightarrow AH.BH.AH.HC=20736\)

Mà: AH2=BH.CH

    => AH2.AH2=BH.CH.AH2

   <=> AH4=20736

    => AH=12cm

    => BH=9cm ; CH=16cm

      Vậy BC=25cm

5 tháng 7 2021

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)có :

\(C\ge\frac{4}{1+\left(a+b\right)^2}\ge\frac{4}{1+1}=2\)

Dấu = khi a=b=1/2