Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) Xét tam giác ABC có:
\(\widehat{BAE}+\widehat{EAC}=90^0\)( Hai góc phụ nhau )
Xét tam giác AKC có:
\(\widehat{EAC}+\widehat{KCA}=90^0\)
=> \(\widehat{BAE}=\widehat{EAC}\)
Xét tam giác BHA và tam giác AKC có:
\(\widehat{BHA}=\widehat{AKC}=90^0\)
Cạnh huyền AB = AC ( Do tam giác ABC vuông cân ở A )
Góc nhọn: \(\widehat{BAE}=\widehat{EAC}\)( cmt )
=> Tam giác BHA = Tam giác AKC ( Cạnh huyền - góc nhọn )
=> BH = AK ( hai cạnh tương ứng )
b) Vì tam giác ABC vuông cân ở A
Mà AM là trung tuyến ( Do M là trung điểm BC )
=> AM cũng là đường cao của BC
=> AM vuông góc với BC
Xét tam giác AME vuông ở H có:
\(\widehat{MEA}+\widehat{MAE}=90^0\)
Xét tam giác KEC vuông ở K có:
\(\widehat{KEC}+\widehat{KCE}=90^0\)
Mà \(\widehat{MEA}=\widehat{KEC}\)( hai góc đối đỉnh )
=> \(\widehat{MAE}=\widehat{KCE}\) (1)
Ta có: CK vuông góc với AK
BH vuông góc với AK
=> CK // BH
=> \(\widehat{KCE}=\widehat{EBH}\) (2)
Từ (1) và (2) => \(\widehat{EBH}=\widehat{MAE}\)
Xét tam giác MAC vuông ở M có:
\(\widehat{MCA}+\widehat{MAC}=90^0\)
Xét tam giác ABC vuông ở A có:
\(\widehat{ABC}+\widehat{MCA}=90^0\)
=> \(\widehat{MAC}=\widehat{ABC}\)
Mà \(\widehat{ABC}=\widehat{MCA}\)( Do tam giác ABC vuông cân ở A )
=> \(\widehat{MAC}=\widehat{MCA}\)
=> Tam giác MAC vuông cân ở M
=> MA = MC
Mà BM = MC ( Do M trung điểm BC )
=> MA = MC = BM
Xét tam giác MBH và tam giác MAK có:
AM = BM ( cmt )
\(\widehat{EBH}=\widehat{MAE}\)( cmt )
AK = BH ( cmt )
=> Tam giác MBH = tam giác MAK ( c.g.c )
c) Vì tam giác MBH = tam giác MAK ( cmt )
=> \(\widehat{MKH}=\widehat{BHM}\) (3)
=> MK = MH
=> Tam giác MHK cân ở M (4)
Xét tam giác BHE vuông ở H có:
\(\widehat{BHM}+\widehat{MHK}=90^0\)( Hai góc phụ nhau ) (5)
Thay (3) vào (5) ta được: \(\widehat{MKH}+\widehat{MHK}=90^0\)
=> Tam giác MHK vuông ở M (6)
Từ (4) và (6) => Tam giác MHK vuông cân ở M
# Mik thấy nhiều bạn khó câu này nên mik lm #
chịu.Em mới học lơp 5 thôi anh/chị ạ.HÃy vào trang và kết bạn với em nhé
Bạn vẽ hình ra đã rồi nhìn lời giải nhá
a) TG' ABC vuông cân tại A -> g' ABC = g' ACB = 45 và AB = AC
TG' ABH vuông tại H -> g' ABH = 90 - BAH (1)
Có g' CAH = 90 - BAH ( TG' ABC vuông tại A ) (2)
Từ (1) và (2) -> g' ABH = g' CAH
Xét TG' AHB và TG' AKC có
g' AHB = g' AKC ( = 90 )
AB = AC ( gt )
g' HAB = g' KAC ( cmt )
-> TG' AHB = TG' AKC ( ch - gn )
-> BH = Ak
a) Xét ΔBHC vuông tại H và ΔCKB vuông tại K có
CB chung
\(\widehat{BCH}=\widehat{CBK}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔBHC=ΔCKB(cạnh huyền-góc nhọn)
b) Ta có: ΔBHC=ΔCKB(cmt)
nên HC=KB(hai cạnh tương ứng)
Ta có: AK+KB=AB(K nằm giữa A và B)
AH+HC=AC(H nằm giữa A và C)
mà AB=AC(ΔABC cân tại A)
và KB=HC(cmt)
nên AK=AH
Xét ΔAKH có AK=AH(cmt)
nên ΔAKH cân tại A(Định nghĩa tam giác cân)
c) Ta có: ΔAKH cân tại A(cmt)
nên \(\widehat{AKH}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAKH cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AKH}=\widehat{ABC}\)
mà \(\widehat{AKH}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên HK//BC(Dấu hiệu nhận biết hai đường thẳng song song)
d) Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC(ΔABC cân tại A)
\(\widehat{BAH}\) chung
Do đó: ΔABH=ΔACK(cạnh huyền-góc nhọn)
nên \(\widehat{ABH}=\widehat{ACK}\)(hai góc tương ứng)
hay \(\widehat{KBO}=\widehat{HCO}\)
Xét ΔKBO vuông tại K và ΔHCO vuông tại H có
KB=HC(cmt)
\(\widehat{KBO}=\widehat{HCO}\)(cmt)
Do đó: ΔKBO=ΔHCO(cạnh góc vuông-góc nhọn kề)
nên OB=OC(hai cạnh tương ứng)
Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: OB=OC(cmt)
nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)
Ta có: MB=MC(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)
Từ (3), (4) và (5) suy ra A,O,M thẳng hàng(đpcm)
a) Vì tg ABC cân=> ^ABC = ^ACB mà 180-ABC=ABD và 180-ACB=ACE
=> ^ABD = ^ACE
TG ABD = TG ACE (c.g.c)
=> ABD=ACE => TG ADE cân(đpcm)
b) * CM được TG HBD = TG KCE (cạnh huyền- góc nhọn)
=> BH=CK (đpcm)
=> DH=KE
* Ta có: AD = AE (vì TG ADE cân)
DH=KE(CMT)
mà AD - DH = AH
AE - KE = AK
=> AH = AK
và DH=KE ( CMT)
Do đó: HK là đường trung bình của TG ADE
=> HK // DE
c, ý b là BOC?
^HBD=^KCE (TG HBD= TG KCE )
=> ^CBO = ^BCO (đối đỉnh vs 2 góc = nhau)
=> TG OBC cân
*