K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2023

A B C H E F M N

a/

Ta có

\(\widehat{A}=90^o;\widehat{MHN}=90^o\) => A và H cùng nhìn MN dưới 1 góc vuông nên A; H thuộc đường tròn đường kính MN => A; M; H; N cùng thuộc 1 đường tròn

Xét tg vuông AHC có

\(MA=MC\Rightarrow HM=MA=MC=\dfrac{AC}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> tg AMH cân tại M \(\Rightarrow\widehat{MAH}=\widehat{MHA}\)

 \(\widehat{NAH}+\widehat{MAH}=\widehat{A}=90^o\)

\(\widehat{NHA}+\widehat{MHA}=\widehat{MHN}=90^o\)

\(\Rightarrow\widehat{NAH}=\widehat{NHA}\) => tg NAH cân tại N => NA=HN (1)

Xét tg vuông ABH có

\(\widehat{NAH}+\widehat{B}=90^o\)

\(\widehat{NHA}+\widehat{NHB}=\widehat{AHB}=90^o\)

Mà \(\widehat{NAH}=\widehat{NHA}\) (cmt)

\(\Rightarrow\widehat{B}=\widehat{NHB}\) => tg BHN cân tại N => NB=HN (2)

Từ (1) và (2) => NA=NB => N là trung điểm AB

b/

Ta có

NA=NB (cmt); MA=MC (gt) => MN là đường trung bình của tg ABC

=> MN//BC

Gọi O là giao của MN với AH. Xét tg ABH có

MN//BC => NO//BH

NA=NB (cmt)

=> OA=OH (trong tg đường thẳng đi qua trung điểm 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại) => O à trung điểm AH

Ta có

\(HE\perp AB\left(gt\right);AC\perp AB\left(gt\right)\) => HE//AC => HE//AF

\(HF\perp AC\left(gt\right);AB\perp AC\left(gt\right)\) => HF//AB => HF//AN

=> AEHF là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Gọi O' là giao của EF với AH => O'A=O'H (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường) => O' là trung điểm của AH

Mà O cũng là trung điểm của AH (cmt)

=> \(O'\equiv O\) => AH; MN; EF cùng đi qua O

 

 

 

Giải thích các bước giải:

a.Ta có AK⊥CK,AH⊥CHAK⊥CK,AH⊥CH

→ˆAKC+ˆAHC=90o+90o=180o→AKC^+AHC^=90o+90o=180o

→A,H,C,K→A,H,C,K thuộc đường tròn đường kính AC

b. Vì ADAD là đường kính của (O)
→AB⊥BD→AB⊥BD

Mà BH⊥AD→AB2=AH.ADBH⊥AD→AB2=AH.AD

c. Vì BC⊥AD→B,CBC⊥AD→B,C đối xứng qua AD
→ˆABC=ˆACB→ABC^=ACB^

Mà AMCBAMCB nội tiếp (O)→ˆKMC=ˆABC(O)→KMC^=ABC^

→ˆNMK=ˆAMB=ˆACB=ˆABC=ˆKMC→NMK^=AMB^=ACB^=ABC^=KMC^

Xét 2 tam giác vuông ΔMKNΔMKN và ΔMKCΔMKC có:

KMKM chung

ˆNMK=ˆKMCNMK^=KMC^ (cmt)

⇒ΔMKN=ΔMKC⇒ΔMKN=ΔMKC (cạnh góc vuông-góc nhọn)

⇒KN=KC⇒AK⇒KN=KC⇒AK vừa là đường cao vừa là trung tuyến ΔANCΔANC

⇒ΔANC⇒ΔANC cân đỉnh AA.

d. Vì ΔACNΔACN cân tại A →AN=AC→AN=AC

Mà B,C đối xứng qua AD
→AC=AB→AN=AB→ΔABN→AC=AB→AN=AB→ΔABN cân đỉnh AA

Lấy E là trung điểm BN→AE⊥BN→AE⊥BN

→E→E là trung điểm BN

→SABN=12AE.BN=12AE.2BE=AE.BE≤AE2+BE22=AB22→SABN=12AE.BN=12AE.2BE=AE.BE≤AE2+BE22=AB22

Dấu = xảy ra khi AE=BE→ˆABE=45o→ˆABM=45oAE=BE→ABE^=45o→ABM^=45o

image

1: AB^2=BH*BC

=>BC=8^2/5=12,8(cm)

\(AC=\sqrt{BC^2-AB^2}=\dfrac{8\sqrt{39}}{5}\left(cm\right)\)

2:

a: Xét tứ giác AMHN có

góc AMH+góc ANH=90+90=180 độ

=>AMHN nội tiếp đường tròn đường kính AH

b: ΔHAC vuông tại H có HM là trung tuyến

nên AC=2HM

Xét ΔABC vuông tại A có AH là đường cao

nên CH*CB=CA^2

=>CH*CB=4HM^2

3: Xét ΔMAN vuông tại A và ΔMHN vuông tại H có

MN chung

MA=MH

=>ΔMAN=ΔMHN

=>AN=HN

=>góc NAH=góc NHA

góc NHA+góc NHB=90 độ

góc NAH+góc NBH=90 độ

mà góc NAH=góc NHA

nên góc NBH=góc NHB

=>NH=NB=NA

=>N là trung điểm của AB

22 tháng 8 2023

Bạn thịnh ơi bạn có cái hình không ạ

nếu có thì chụp cho mình với

 

10 tháng 2 2019

ai trả lời hộ đi