Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì tam giác ABC cân có AH là đường cao
nên AH đồng thời là đường phân giác
\(\Rightarrow\widehat{HAB}=\widehat{HAC}\)
Ta có \(AH\perp BC\)
Mà HD và HE lần lượt là các đường phân giác
nêngócAHD=AHE
Suy ra tam giác AHD=AHE ( góc cạnh góc) ( bạn tự chứng minh)
nên AD=AE
Chứng minh AE=EH( tự chứng minh)
Mà HE=HD do tam giác AHD VÀ tam giác AHE bằng nhau
nên AE=EH=DH=AD
Vậy AEDH là hình thoi
b) Chứng minh AE=EC
AD=DB
Aps dụng tính chất đường trung bình suy ra dpcm
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
b: Ta có: ADHE là hình chữ nhật
=>AD//HE và AD=HE
Ta có: AD//HE
F\(\in\)HE
Do đó: AD//HF
Ta có: AD=HE
HE=EF
Do đó: AD=EF
Xét tứ giác ADEF có
AD//EF
AD=EF
Do đó: ADEF là hình bình hành
c: ta có: AEHD là hình chữ nhật
=>\(\widehat{AED}=\widehat{AHD}\)
mà \(\widehat{AHD}=\widehat{ABC}\left(=90^0-\widehat{ACB}\right)\)
nên \(\widehat{AED}=\widehat{ABC}\)
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MB=MC
Ta có: MA=MC
=>\(\widehat{MAC}=\widehat{MCA}\)
Ta có: \(\widehat{AED}+\widehat{MAC}\)
\(=\widehat{ABC}+\widehat{ACB}=90^0\)
=>AM\(\perp\)ED
mà ED//AF(ADEF là hình bình hành)
nên AM\(\perp\)AF
a) Tứ giác ADHE là hình chữ nhật.
- Vì AD vuông góc với AB và HE vuông góc với AC (do HD và HE lần lượt là đường cao của tam giác ABC), nên ADHE là hình chữ nhật.
b) Lấy điểm F sao cho E là trung điểm của HF.
- Vì E là trung điểm của HF, nên EF = FH.
- Ta cũng có HE = EA (do E là trung điểm của HF và EA).
- Từ đó, ta có EF = FH = HE = EA.
- Vậy, tứ giác ADEF có các cạnh đối diện bằng nhau, là đặc điểm của hình bình hành.
c) Gọi M là trung điểm của BC. Chúng ta cần chứng minh AM vuông góc với AF.
- Ta biết rằng E là trung điểm của HF (theo phần b).
- Vì M là trung điểm của BC, nên BM = MC.
- Từ đó, ta có AM = BM = MC.
- Vì EF = FH = HE = EA (theo phần b), nên tứ giác ADEF là hình bình hành.
- Do đó, ta có AF song song với DE.
- Vì AM = MC và AF song song với DE, nên AM vuông góc với AF.
Vậy, ta đã chứng minh được AM vuông góc với AF.
a) Tứ giác ADHE là hình chữ nhật vì có 3 góc vuông \(\widehat{A}\)= \(\widehat{D}\)=\(\widehat{E}\)= 900
b) Tứ giác ADHE là hình chữ nhật nên DE = AH
Ap dụng định lý Pytago vào tam giác vuông ABH ta có:
AH2 + BH2 = AB2
\(\Rightarrow\)AH2 = AB2 - BH2
\(\Rightarrow\)AH2 = 102 - 62 = 64
\(\Rightarrow\)AH = \(\sqrt{64}\)= 8
Vì AH = DE nên DE = 8cm
a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
b: ADHE là hình chữ nhật
nen AH=DE
c: Để ADHE là hình vuông thì AH là phân giác của góc DAE
=>ΔABC cân tại A
=>AB=AC
a, AH là đường cao của tam giác ABC (gt)
Tam giác ABC vuông cân tại A (gt)
=> AH đồng thời là đường phân giác của tam giác ABC (đl)
=> góc HAB = 1/2 góc BAC (đl)
mà góc BAC = 90 do tam giác ABC vuông cân tại A (gt)
=> góc HAB = 90 : 2 = 45 (1)
HE là phân giác của góc CHA (gt)
=> góc EHA = 1/2 góc CHA (Đl)
mà góc CHA = 90 do AH là đường cao (gt)
=> góc EHA = 90 : 2 = 45 (2)
(1)(2) => góc EHA = góc HAB = 45 mà 2 góc này sole trong
=> EH // AD (đl)
xét tứ giác ADHE
=> ADHE là hình thang
b, chứng minh đường trung bình