K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

Câu c có khá nhiều cách giải,nhưng mình trình bày 1 cách thôi nhá :)

2 tháng 3 2020

Câu c là lấy H đối xừng với B qua M,Kẻ đường thẳng song song với AE vắt EM,AF lần lượt tại V và W ạ

2 tháng 6 2017

Tui sẽ làm!

2 tháng 6 2017

Ôn tập cuối năm phần hình học

25 tháng 12 2017

M N P Q A F E 1 1 1 1 2 3 1 2 3 1 2 1 2 2 3

MEAF là HCN vì M1=F1=E1=90 độ

b.QMN cân tại M ( -> Góc FQA=Góc N1)

Có  QFA=AEN=90 ĐỘ

-> T/G QFA đồng dạng vs NEA ->  A3=N1=FQA-> T/G QFA vuông cân tại F ->  FQ=FA=ME

-Xét 2 tam giác PQF=QME(C.G.C)

-> QE=PF( 2 cạnh tương ứng ) -> P1=Q1 ( góc tương ưng )

 có F3+P1=90 ĐỘ ( tam giác vuông ) mà P1=Q1 ->  F3+Q1=90 ĐỘ -> QE vuông góc vs PF

c.Có FA+AE=ME+EN=MN( không đổi =>FA.AE lớn nhất khi FA=AE => MEAF là hình vuông khi A trùng vs giao điểm 2 đường chéo của hình vuông MNPQ 

Diện tích hình vuông MEAF là FA.AE

20 tháng 12 2020

a) Xét tứ giác AEMF có 

\(\widehat{EAF}=90^0\)(\(\widehat{BAC}=90^0\), E∈AB, F∈AC)

\(\widehat{AEM}=90^0\)(ME⊥AB)

\(\widehat{AFM}=90^0\)(MF⊥AC)

Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+12^2=169\)

\(\Leftrightarrow BC=\sqrt{169}=13cm\)

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

hay \(AM=\dfrac{13}{2}=6.5cm\)

Ta có: AEMF là hình chữ nhật(cmt)

nên AM=EF(Hai đường chéo của hình chữ nhật AEMF)

mà AM=6,5cm

nên EF=6,5cm

Vậy: EF=6,5cm

c) Xét ΔABC có

M là trung điểm của BC(gt)

ME//AC(ME//AF, C∈AF)

Do đó: E là trung điểm của AB(Định lí 1 đường trung bình của tam giác)

\(AE=\dfrac{AB}{2}=\dfrac{5}{2}=2.5cm\)

Xét ΔABC có 

M là trung điểm của BC(gt)

MF//AB(MF//AE, B∈AE)

Do đó: F là trung điểm của AC(Định lí 1 đường trung bình của tam giác)

\(AF=\dfrac{AC}{2}=\dfrac{12}{2}=6cm\)

Ta có: AEMF là hình chữ nhật(cmt)

nên \(S_{AEMF}=AE\cdot AF=2.5\cdot6=15cm^2\)

13 tháng 12 2016

ai giúp em lm câu Tính chu vi với ạ lm mãi ko ra khocroi