K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2019

A B C D M O N E

Xét \(\Delta OEB\)và \(\Delta OMC\)có : 

\(OB=OC\left(gt\right)\)

\(\widehat{EBO}=\widehat{MCO}\)

\(EB=MC\left(gt\right)\)

\(\Rightarrow\Delta OEB=\Delta OMC\left(c.g.c\right)\)

\(\Rightarrow OE=OM\)( hai cạnh tương ứng ) \(\left(1\right)\)

Cũng có :  \(\widehat{EOB}=\widehat{MOC}\)( hai góc tương ứng ) 

\(\Rightarrow\widehat{EOB}+\widehat{BOM}=\widehat{BOM}+\widehat{MOC}\)

\(\Rightarrow\widehat{EOM}=\widehat{BOC}=90^o\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\Delta OEM\)vuông cân ( đpcm ) 

\(b,\)Ta có : \(AB//CN\Rightarrow\Delta ABM~\Delta NCM\)

\(\Rightarrow\frac{CM}{BM}=\frac{MN}{AM}\Rightarrow\frac{CM}{BM+MN}=\frac{MN}{AM+MN}\)

\(\Rightarrow\frac{CM}{BC}=\frac{MN}{AN}\Rightarrow\frac{BE}{AB}=\frac{MN}{AN}\)

\(\Rightarrow ME//BN\)

Cho chị nợ câu c :) lâu không học toán 8 quên sạch ròi :((

25 tháng 8 2019

Gọi K là giao điểm của OM và BN

Do \(ME//BN\)(CMb)

=> Góc BKM= góc  EMO=45 độ 

Xét tam giác OBM và tam giác OKB có

\(BKM=OBM=45^0\)

Góc O chung

=> tam giác OBM đồng dạng tam giác OKB

=> \(OB^2=OM.OK\)

MÀ \(OB=OC\)

=> \(OC^2=OM.OK\)

=> tam giác OMC đồng dạng tam giác OCK

=> \(MKC=OCM=45^o\)

=> BKC=90 độ

=> \(K\equiv H\)

=> O,M,H thẳng hàng

Vậy O,M,H thẳng hàng


 

28 tháng 5 2018

A B C M D E

a) \(\frac{MB}{EC}=\frac{DB}{MC}\)

\(\Leftrightarrow MB.MC=EC.DB\)

Mà tg ABC cân tại A => MC = MB

=> \(BM^2=BD.CE\)(đpcm)

b) Xét tg MDE và BDM

\(\widehat{MDE}=\widehat{BDM}\)(gt)

\(\widehat{MDB}=\widehat{EDM}\)(gt)

\(\Rightarrow\Delta MDE~\Delta BDM\)

28 tháng 5 2018

A B C D E M

a) \(\widehat{MDB}=\widehat{CME}\left(gt\right)\)

\(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)

\(\Rightarrow\Delta DBM;\Delta MCE\left(g.g\right)\Rightarrow\frac{BM}{CE}=\frac{BD}{MC}\)hay \(\frac{BM}{CE}=\frac{BD}{BM}\)(M là trung điểm BC)

\(\Rightarrow BM^2=BD.CE\)

b) \(\widehat{BMD}=\widehat{MEC}\)\(\Delta DBM\)và \(\Delta MCE\)đồng dạng)

Mà BME là góc ngoài tam giác MEC

=> \(\widehat{BMD}+\widehat{DME}=\widehat{MEC}+\widehat{MCE}=\widehat{BMD}+\widehat{MCE}\)

\(\Rightarrow\widehat{DME}=\widehat{MCE}=\widehat{MBA}\left(1\right)\)

Từ \(\Delta BDM;\Delta MCE\left(g.g\right)\Rightarrow\frac{DM}{ME}=\frac{BM}{CE}\)hay \(\frac{DM}{ME}=\frac{MC}{CE}\left(2\right)\)

Từ (1) và (2) => \(\Delta DME\Delta MCE\left(c.g.c\right)\)

Mà \(\Delta DBM\Delta MCE\left(g.g\right)\Rightarrow\Delta DBM~\Delta DME\)

30 tháng 8 2016