K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2018

Bài 1:

a, Kéo dài BH cắt AC tại K

\(\Delta AHB=\Delta AHK\left(g.c.g\right)\Rightarrow\hept{\begin{cases}AB=AK=12cm\\HB=HK\end{cases}}\)

Ta có: \(KC=AC-AK=18-12=6\left(cm\right)\)

HM là đường trung bình của \(\Delta BKC\Rightarrow HM=\frac{1}{2}KC=\frac{1}{2}.6=3\left(cm\right)\)

Chúc bạn học tốt.

loading...  loading...  loading...  

11 tháng 9 2016

a.xét dhc ta có: mi là đtb --> mi // hc

mà hc vuông góc ah

nên mi vuông góc ah

b.Ta có ah là dg cao--> ah là t/tuyến-> bh=hc

xét dbc có hm là dtb--> hm// bd

trong ahm có hd vuông góc am

mi vuông góc ah

mà am và mi cắt tại i nên i là trực tâm--> ai vuông góc hm mà hm//bd 

nên AI vuông góc bd

10 tháng 11 2017

Bài 1:Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.
a,CM tam giác AOM bằng tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB
b,Tam giác DMC là tam giác gì?Vì sao?
c,CM DM + AM < DC
Bài 2:Cho tam giác ABC có góc A=90* và đường phân giác BH(H thuộc AC).Kẻ HM vuông góc với BC(M thuộc BC).Gọi N là giao điểm của AB và MH.CM:
a, Tam giác ABGH bằng tam giác MBH.
b, BH là đường trung trực của đoạn thẳng AH
c, AM // CN
d, BH vuông góc với CN
Bài 3:Cho tam giác ABC vuông góc tại C có góc A = 60* và đường phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc với BK tại K(K thuộc AB).Kẻ BD vuông góc với AE tại D(D thuộc AE).CM:
a, Tam giác ACE bằng tam giác AKE
b, BE là đường trung trực của đoạn thẳng CK
c, KA=KB
d, EB>EC
Bài 4:Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E.Kẻ EH vuông góc BC tại H(H thuộc BC).CM:
a, Tam giác ABE bằng tam giác HBE
b, BE là đường trung trực của đoạn thẳng AH
c, EC > AE
Bài 5:Cho tam giác ABC vuông tại A có đường cao AH
1,Biết AH=4cm,HB=2cm,Hc=8cm:
a,Tính độ dài cạnh AB,AC
b,CM góc B > góc C
2,Giả sử khoảng cách từ điểm A đến đường thẳng chứa cạnh BC là không đổi.Tam giác ABC cần thêm điều kiện gì để khoảng cách BC là nhỏ nhất.
Bài 6:Cho tam giác ABC vuông tại A có đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.
a,CM góc BAD= góc BDA
b,CM góc HAD+góc BDA=góc DAC+góc DAB.Từ đó suy ra AD là tia phân giác của góc HAC
c,Vẽ DK vuông góc AC.Cm AK=AH
d,Cm AB+AC<BC+AH
Bài 7:Cho tam giac ABC vuông tại C.Trên cạnh AB lấy điểm D sao cho AD = AC.kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I.
a,CM AE là phân giác \{CAB}
b,CM AE là trung trực của CD
c,So sánh CD và BC
d,M là trung điểm của BC,DM cắt BI tại G,CG cắt DB tại K.CM K là trung điểm của DB
Bài 8:Cho tam giác ABC có BC=2AB.Gọi M là trung điểm của BC,N là trung điểm của BM.Trên tia đối của NA lấy điểm E sao cho AN=EN.CM:
a,Tam giác NAB=Tam giác NEM
b,Tam giác MAB là tam giác cân
c,M là trọng tâm của Tam giác AEC
d,AB>\frac{2}{3}AN

18 tháng 11 2023

Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>\(\widehat{AED}=\widehat{AHD}\)

AM\(\perp\)DE

=>\(\widehat{AED}+\widehat{MAC}=90^0\)

mà \(\widehat{AED}=\widehat{AHD}\left(cmt\right)\) 

và \(\widehat{AHD}=\widehat{ABH}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{ABH}+\widehat{MAC}=90^0\)

mà \(\widehat{ABH}+\widehat{MCA}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{MAC}=\widehat{MCA}\)

=>MA=MC

\(\widehat{MAC}+\widehat{MAB}=\widehat{BAC}=90^0\)

\(\widehat{MCA}+\widehat{MBA}=90^0\)(ΔABC vuông tại A)

mà \(\widehat{MAC}=\widehat{MCA}\)

nên \(\widehat{MAB}=\widehat{MBA}\)

=>MA=MB

mà MA=MC

nên MB=MC

=>M là trung điểm của BC

( Hình em tự vẽ nhé! )

Lấy O là giao điểm DE và HA

+ Xét tứ giác ADHE có:

\(\widehat{HDA}=\widehat{DAE}=\widehat{AEH}=90^o\)

=> ADHE là hình chữ nhật

=> O là trung điểm AH (t/c)

     O là trung điểm DE (t/c)

=> OA = OH = OD = OE 

=> ΔAOE cân tại O

=> \(\widehat{OAE}=\widehat{OEA}\left(tc\right)\)

+ Xét ΔABH vuông tại H

=> \(\widehat{BAH}+\widehat{ABH}=90^o\)

Mà \(\widehat{BAH}+\widehat{CAH}=90^o\)

=> \(\widehat{ABH}=\widehat{CAH}\)

Mà \(\widehat{CAH}=\widehat{OEH}\)

\(\widehat{ABH}=\widehat{AEO}\)

+ Xét ΔADE và ΔACB có:

\(\widehat{DAE}=\widehat{CAB}\left(=90^o\right)\)

\(\widehat{AED}=\widehat{ABC}\)

=> ΔADE \(\sim\) ΔACB (g.g)

=> \(\widehat{ADE}=\widehat{ACB}\left(2gtu\right)\)

Lấy I là giao điểm AM và DE 

+ Xét ΔAIE vuông tại I 

=> \(\widehat{IAE}+\widehat{IEA}=90^o\)

Mà \(\widehat{BAM}+\widehat{MAC}=90^o\)

=> \(\widehat{IEA}=\widehat{MAB}\)

Mà \(\widehat{IEA}=\widehat{ABC}\)

=> \(\widehat{ABC}=\widehat{BAM}\)

=> ΔABM cân tại M

=> MA = MB (t/c)

+ Xét ΔAID vuông tại I

=> \(\widehat{IDA}+\widehat{IAD}=90^o\)

Mà \(\widehat{IAD}+\widehat{MAC}=90^o\)

=> \(\widehat{IDA}=\widehat{MAC}\)

Mà \(\widehat{IDA}=\widehat{ACM}\)

=> \(\widehat{MAC}=\widehat{ACM}\)

=> ΔMAC cân tại M

=> MA = MC (t/c)

Mà MA = MB 

=> MB = MC

=> M là trung điểm BC.

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0