Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét tứ giác $AHBC$ có:
$\widehat{BHC}=\widehat{BAC}=90^0$ và cùng nhìn cạnh $BC$ nên $AHBC$ là tứ giác nội tiếp.
a, HS tự chứng minh
b, HS tự chứng minh
c, Tứ giác ACFK nội tiếp (I) với I là trung điểm của KF => BD là trung trực AC phải đi qua I
d, HS tự chứng minh
chỉnh lại câu 1 tí:
1)
+ Xét tứ giác AEFD : ADF +AEF = 90 +90 = 180
Suy ra: Tứ giác AEFD nội tiếp được đường tròn
Suy ra: EAF = EDF hay EAF = EDC
+ Xét tgAEF và tg EDC : AEF = ECD = 90 VÀ EAF = EDC
Suy ra: tgAEF ~ tgDCE => .AE /AF = CD/DE
2.
Tứ giác AEFD nội tiếp được đường tròn
=> EAF = EDF mặt khác EAF = EDC mặt khác : EAF + HAG = 90 VÀ EDC + HEG =90
suy ra: HAG = HEG suy ra tứ giác AEGH nội tiếp được đường tròn => HGE = 90
Vì HGE = HAE = 90 ,suy ra đường tròn này có tâm O là trung điểm của AE.
3.
Đường tròn ngoại tiếp tam giác AHE chính là đường tròn (O).
+ Xét tam giác HGE : và OH = OE = 1/2. HE => OH = OE = OG.
+ Xét tg OEK và tg OGK :
OE = OG ; OK chung ;EK = GK( Vì K thuộc đường trung trực của đoạn thẳng EG)
Suy ra tgOEK =tg OGK (c – c – c) => KGO = KEO = 90 độ
Suy ra: KG vuông góc với OG, vậy KG là tiếp tuyến của đường tròn ngoại tiếp tam giác HAE.(đpcm).
a/ A và H cùng nhìn BC dưới 1 góc vuông => A và H nằm trên cùng 1 đường tròn đường kính BC
=> Tứ giác AHBC là tứ giác nội tiếp
b/ Xét tam giác vuông ABE và tam giác vuông HCE có
BE vuông góc với CH
AB vuông góc với CE
=> ^ABE=^HCE (góc có cạnh tương ứng vuông góc)
=> tam giác ABE đồng dạng với tam giác HCE
=> \(\frac{EA}{EH}=\frac{EB}{EC}\Rightarrow EA.EC=EH.EB\)
c/ Xét tam giác EBC có
BA vuông góc CE
CH vuông góc với BE
=> D là trực tâm của tam giác EBC => ED là đường cao của tam giác EBC => ED vuông góc với BC
Ta có:
ED vuông góc với BC
CE vuông góc với AB
=> ^CED = ^ABC (góc có cạnh tương ứng vuông góc)
^ABC=^ACB=(180 - ^BAC)/2 = 45
=> ^CED=45
Xét tam giác vuông ADE có ^ADE=(180 - CED - DAE) = (180 - 45 - 90) = 45
=> ^CED = ^ADE
=> Tam giác ADE cân tại A => AD=AE