K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2016

a/ A và H cùng nhìn BC dưới 1 góc vuông => A và H nằm trên cùng 1 đường tròn đường kính BC

=> Tứ giác AHBC là tứ giác nội tiếp

b/ Xét tam giác vuông ABE và tam giác vuông HCE có

BE vuông góc với CH

AB vuông góc với CE

=> ^ABE=^HCE (góc có cạnh tương ứng vuông góc)

=> tam giác ABE đồng dạng với tam giác HCE

=> \(\frac{EA}{EH}=\frac{EB}{EC}\Rightarrow EA.EC=EH.EB\)

c/ Xét tam giác EBC có

BA vuông góc CE

CH vuông góc với BE

=> D là trực tâm của tam giác EBC => ED là đường cao của tam giác EBC => ED vuông góc với BC

Ta có:

ED vuông góc với BC

CE vuông góc với AB

=> ^CED = ^ABC (góc có cạnh tương ứng vuông góc)

^ABC=^ACB=(180 -  ^BAC)/2 = 45

=> ^CED=45

Xét tam giác vuông ADE có ^ADE=(180 - CED - DAE) = (180 - 45 - 90) = 45

=> ^CED = ^ADE

=> Tam giác ADE cân tại A => AD=AE

AH
Akai Haruma
Giáo viên
7 tháng 3 2021

Lời giải:

Xét tứ giác $AHBC$ có:

$\widehat{BHC}=\widehat{BAC}=90^0$ và cùng nhìn cạnh $BC$ nên $AHBC$ là tứ giác nội tiếp.

AH
Akai Haruma
Giáo viên
7 tháng 3 2021

Hình vẽ:undefined

29 tháng 4 2018

a, HS tự chứng minh

b, HS tự chứng minh

c, Tứ giác ACFK nội tiếp (I) với I là trung điểm của KF => BD là trung trực AC phải đi qua I

d, HS tự chứng minh

4 tháng 6 2015

chỉnh lại câu 1 tí:

1)
    + Xét tứ giác AEFD :  ADF +AEF = 90 +90 = 180
    Suy ra: Tứ giác AEFD nội tiếp được đường tròn 
    Suy ra:  EAF = EDF hay EAF = EDC
    + Xét tgAEF và tg EDC :  AEF = ECD = 90 VÀ EAF = EDC
    Suy ra: tgAEF ~  tgDCE =>  .AE /AF = CD/DE

2.

Tứ giác AEFD nội tiếp được đường tròn 
=>  EAF = EDF mặt khác  EAF = EDC mặt khác  : EAF + HAG = 90 VÀ EDC + HEG =90
suy ra: HAG = HEG  suy ra tứ giác AEGH nội tiếp được đường tròn =>  HGE = 90 
Vì HGE = HAE = 90 ,suy ra đường tròn này có tâm O là trung điểm của AE.

3.

Đường tròn ngoại tiếp tam giác AHE chính là đường tròn (O).
    + Xét tam giác HGE :   và OH = OE = 1/2. HE => OH = OE = OG.
    + Xét tg OEK và tg OGK : 
OE = OG ; OK chung ;EK = GK( Vì K thuộc đường trung trực của đoạn thẳng EG)
Suy ra  tgOEK =tg OGK (c – c – c) =>  KGO = KEO = 90 độ
Suy ra: KG vuông góc với OG, vậy KG là tiếp tuyến của đường tròn ngoại tiếp tam giác HAE.(đpcm).