Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ A và H cùng nhìn BC dưới 1 góc vuông => A và H nằm trên cùng 1 đường tròn đường kính BC
=> Tứ giác AHBC là tứ giác nội tiếp
b/ Xét tam giác vuông ABE và tam giác vuông HCE có
BE vuông góc với CH
AB vuông góc với CE
=> ^ABE=^HCE (góc có cạnh tương ứng vuông góc)
=> tam giác ABE đồng dạng với tam giác HCE
=> \(\frac{EA}{EH}=\frac{EB}{EC}\Rightarrow EA.EC=EH.EB\)
c/ Xét tam giác EBC có
BA vuông góc CE
CH vuông góc với BE
=> D là trực tâm của tam giác EBC => ED là đường cao của tam giác EBC => ED vuông góc với BC
Ta có:
ED vuông góc với BC
CE vuông góc với AB
=> ^CED = ^ABC (góc có cạnh tương ứng vuông góc)
^ABC=^ACB=(180 - ^BAC)/2 = 45
=> ^CED=45
Xét tam giác vuông ADE có ^ADE=(180 - CED - DAE) = (180 - 45 - 90) = 45
=> ^CED = ^ADE
=> Tam giác ADE cân tại A => AD=AE
a: Xét tứ giác BPQC có
\(\widehat{BPC}=\widehat{BQC}=90^0\)
Do đó: BPQC là tứ giác nội tiếp
a: Xét (O) có
OI là một phần đường kính
AD là dây
OI\(\perp\)AD tại I
Do đó: I là trung điểm của AD
Xét ΔBAD có
BI là đường cao
BI là đường trung tuyến
Do đó: ΔBAD cân tại B
b: Xét (O) có
ΔABC nội tiếp
BC là đường kính
Do đó;ΔBAC vuông tại A
=>BA\(\perp\)EC
Xét tứ giác EHBA có
\(\widehat{EHB}+\widehat{EAB}=90^0+90^0=180^0\)
=>EHBA là tứ giác nội tiếp
=>E,H,A,B cùng thuộc 1 đường tròn
thế còn c,d đâu anh ??? hình vẽ ko có làm còn thiếu, có trách nhiệm với người hỏi đi anh
Tam giác EBF cân tại B nên HE = HF
Tam giác AEF vuông tại A có AH là đường trung tuyến ứng với cạnh huyền nên: HA = HE = HF = (1/2).EF (tính chất tam giác vuông)
Vậy tam giác AHF cân tại H.
Gọi I là giao điểm của AD và BC
Vì BC là đường trung trực của AD nên theo tính chất đường trung trực ta có:
BA = BD
Tam giác BAD cân tại B có BI ⊥ AD nên BI là tia phân giác của góc ABD
Tam giác EBF có BH là tia phân giác của góc EBF và BH ⊥ EF nên tam giác EBF cân tại B.
a) Xét tứ giác KEDC có
\(\widehat{KEC}=\widehat{KDC}\left(=90^0\right)\)
\(\widehat{KEC}\) và \(\widehat{KDC}\) là hai góc cùng nhìn cạnh KC
Do đó: KEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Lời giải:
Xét tứ giác $AHBC$ có:
$\widehat{BHC}=\widehat{BAC}=90^0$ và cùng nhìn cạnh $BC$ nên $AHBC$ là tứ giác nội tiếp.
Hình vẽ: