Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ A và H cùng nhìn BC dưới 1 góc vuông => A và H nằm trên cùng 1 đường tròn đường kính BC
=> Tứ giác AHBC là tứ giác nội tiếp
b/ Xét tam giác vuông ABE và tam giác vuông HCE có
BE vuông góc với CH
AB vuông góc với CE
=> ^ABE=^HCE (góc có cạnh tương ứng vuông góc)
=> tam giác ABE đồng dạng với tam giác HCE
=> \(\frac{EA}{EH}=\frac{EB}{EC}\Rightarrow EA.EC=EH.EB\)
c/ Xét tam giác EBC có
BA vuông góc CE
CH vuông góc với BE
=> D là trực tâm của tam giác EBC => ED là đường cao của tam giác EBC => ED vuông góc với BC
Ta có:
ED vuông góc với BC
CE vuông góc với AB
=> ^CED = ^ABC (góc có cạnh tương ứng vuông góc)
^ABC=^ACB=(180 - ^BAC)/2 = 45
=> ^CED=45
Xét tam giác vuông ADE có ^ADE=(180 - CED - DAE) = (180 - 45 - 90) = 45
=> ^CED = ^ADE
=> Tam giác ADE cân tại A => AD=AE
Lời giải:
Xét tứ giác $AHBC$ có:
$\widehat{BHC}=\widehat{BAC}=90^0$ và cùng nhìn cạnh $BC$ nên $AHBC$ là tứ giác nội tiếp.
a) Chứng minh tam giác MAB đồng dạng tam giác MFC
b) Chứng minh góc \(\widehat{BKF}=\widehat{FAD}\)
c) E là trực tâm của \(\Delta MBC\)suy ra MH vuông góc BC ... suy ra tứ giác MDBH là hình thang
d) \(\Delta BHE\)đồng dạng \(\Delta BAC\)... suy ra BE.BA=BC.BH
\(\Delta CHE\)đồng dạng \(\Delta CFB\)... suy ra CE.CF=CB.CH
BE.BA+CE.CF=BC.BH+CB.CH=BC(BH+CH)=BC.BC=BC^2
Lời giải:
a. Xét tứ giác $AHBC$ có $\widehat{BHC}=\widehat{BAC}=90^0$ và cùng nhìn cạnh $BC$ nên $AHBC$ là tứ giác nội tiếp.
b.
Do $AHBC$ là tứ giác nội tiếp nên:
$\widehat{EHA}=\widehat{ACB}=45^0$ (do $ABC$ là tam giác vuông cân tại $A$)
c.
Xét tam giác $EAH$ và $EBC$ có:
$\widehat{E}$ chung
$\widehat{EHA}=\widehat{ACB}=\widehat{ECB}$ (cmt)
$\Rightarrow \triangle EAH\sim \triangle EBC$ (g.g)
d.
Xét tứ giác $ADHE$ có tổng hai góc đối $\widehat{EHD}+\widehat{DAE}=90^0+90^0=180^0$
$\Rightarrow ADHE$ là tứ giác nội tiếp
$\Rightarrow \widehat{EDA}=\widehat{EHA}=45^0$
Tam giác $EDA$ có $\widehat{A}=90^0$ và $\widehat{D}=45^0$ nên $EDA$ là tam giác vuông cân tại $A$
$\Rightarrow AD=AE$
a. Ta có ∠HAB = ∠HCB (cùng chắn cung HB) và ∠HBA = ∠HCA (cùng chắn cung HA). Do đó, tứ giác AHBC nội tiếp.
b. Góc AHE = 90° - ∠AEB = 90° - ∠ACB = ∠ABC = 45° (vì tam giác ABC vuông cân tại A).
c. Ta có ∠EHA = ∠EBC (cùng chắn cung EB) và ∠EAH = ∠EBA = ∠EBC (vì tam giác ABC vuông cân tại A). Do đó, tam giác EAH và EBC đồng dạng.
d. Vì tam giác EAH và EBC đồng dạng nên EA/EB = AH/BC. Nhưng AH = BC (vì tam giác ABC vuông cân tại A) nên EA = EB. Mà AB = AE + EB = 2EA. Do đó, AD = AB/2 = EA = AE.