K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Theo câu a), từ AB = 2AM, suy ra HC = 2HD. Ta có HC < MC (h là chân đường cao hạ từ D của tam giác DCM vuông tại D) nên HC = 2HD < MC = AM < AH (do M nằm giữa A và H), vì thế 2HD không thể bằng AH. Khẳng định b) là sai.

4 tháng 12 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hai tam giác vuông HCD và DCM đồng dạng (có cùng góc nhọn tại C) mà

∆ DCM ∼  ∆ ABM (vì là hai tam giác vuông có ∠ (DMC) =  ∠ (AMB), vậy  ∆ HCD ∼  ∆ ABM. Khẳng định a) là đúng.

25 tháng 10 2021

b: Xét ΔBAC vuông tại B có BH là đường cao

nên \(HA\cdot HC=BH^2\left(1\right)\)

Xét ΔBHC vuông tại H có HE là đường cao

nên \(BE\cdot BC=BH^2\left(2\right)\)

Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)

26 tháng 10 2021

Giải dùm em câu d nữa ạ

 

16 tháng 9 2017

click vào đường giải dưới đây

                   hình 9 | Diễn đàn HOCMAI - Cộng đồng học tập lớn nhất Việt Nam

16 tháng 9 2017

tao mới học lớp 4

29 tháng 10 2021

b: Xét ΔABM vuông tại A có AK là đường cao

nên \(BK\cdot BM=AB^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BK\cdot BM=BH\cdot BC\)