Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Tâm đường tròn ngoại tiếp tam giác ABC nằm trên trung điểm BC
=> Tâm đường tròn là điểm M
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi đường tròn (O; R) là đường tròn ngoại tiếp tam giác ABC.
Kẻ đường kính AO cắt (O) tại D.
Hai tam giác vuông ABH và ADC có ∠ABH =∠ADC (cùng chắn cung AC) nên chúng đồng dạng.
=>ABAD=AHAC=>ABAD=AHAC
=>AD=AB⋅ACAH=6⋅103=20(cm)=>AD=AB⋅ACAH=6⋅103=20(cm)
Do đó, R=AD2=202=10(cm)
P.s:Ko chắc
![](https://rs.olm.vn/images/avt/0.png?1311)
a: O là trung điểm của BC
b: Xét \(\left(\dfrac{BH}{2}\right)\) có
ΔBDH là tam giác nội tiếp
BH là đường kính
Do đó: ΔBDH vuông tại D
Xét \(\left(\dfrac{CH}{2}\right)\)có
ΔCHE nội tiếp đường tròn
CH là đường kính
Do đó: ΔCHE vuông tại E
Xét tứ giác ADHE có
\(\widehat{AEH}=\widehat{ADH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D 4 6 H O
Kéo dài đường cao AH cắt đường tròn ngoại tiếp tam giác ABC tại D . Gọi O là tâm đường tròn ngoại tiếp tam giác ABC
Vì tam giác ABC cân tại A nên AHlà đường trung trực của BC . Nên AD là đường trung trực của BC .
Khi đó O thuộc AD hay AD là đường kính của đường tròn ngoại tiếp tam giác ABC
Tam giác ACD nội tiếp trong (O ) có AD là đường khính suy ra \(\widehat{ACD=90}\)độ
Tam giác ACD vuông tại C nên theo hệ thức liên hệ giữa đường cao và hình chiếu , ta có :
\(CH^2=HA.HD\)
\(\Rightarrow\)\(HD=\frac{CH^2}{HA}=\frac{\left(\frac{BC}{2}\right)^2}{HA}=\frac{\left(\frac{12}{2}^2\right)}{4}=\frac{6^2}{4}=9cm\)
Ta có \(AD=AH+HD=4+9=13\left(cm\right)\)
Vậy bán kính của đường tròn (O ) là :
\(R=\frac{AD}{2}=\frac{13}{2}=6,5\left(cm\right)\)
Chúc bạn học tốt !!!
(Hình)
Diện tích tam giác ABC là:
SABC = 1/2 . AH . BC = 1/2 . 4 . 12 = 24 (cm2)
Vì tam giác ABC cân tại A nên đường cao AH là trung tuyến BC
Nên : BH= HC= 1/2. BC= 1/2 . 12 = 6 (cm)
Trong tam giác AHB:
Áp dụng ĐL pi-ta-go:
AB2 = AH2 + BH2
AB2 = 42 + 62
AB= \(2\sqrt{13}\) (cm)
Vì tam giác ABC cân tại A nên : AB = AC = \(2\sqrt{13}\) (cm)
Ta có : SABC =\(\frac{AB\cdot AC\cdot BC}{4R}\) (R là bán kính đường tòn ngoại tiếp tam giác ABC)
<=> \(24=\frac{2\sqrt{13}.2\sqrt{13}.12}{4R}\)
<=> R= \(\frac{13}{2}\) (cm)
OK
![](https://rs.olm.vn/images/avt/0.png?1311)
O A B C D K
Kẽ OA cắt đường tròn tại D cắt BC tại K
Ta có OA = OB = OD = R
\(\Rightarrow\)\(\Delta ABD\) vuông tại D
\(\Rightarrow BD=\sqrt{OD^2-AB^2}=\sqrt{10^2-8^2}=6\)
Ta có OK là đường trung trực của BC nên \(\hept{\begin{cases}OK⊥BC\\BK=CK\end{cases}}\)
Ta lại có: \(S_{\Delta ABD}=\frac{1}{2}AB.BD=\frac{1}{2}AD.BK\)
\(\Rightarrow BK=\frac{AB.BD}{AD}=\frac{8.6}{10}=4,8\)
\(\Rightarrow BC=2BK=4,8.2=9,6\)
Viết nhầm tùm lum hết. Do không thấy cái hình. Mà thôi nhìn hình sửa hộ luôn nhé
Gọi O là trung điểm BC
Ta có: Tam giác ABC vuông tại A nên đường tròn ngoại tiếp tam giác ABC có cạnh huyền BC là đường kính và O là tâm đường tròn
=> Bán kính là OA,OB,OC