K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCAB có

E,D lần lượt là trung điểm của CA,CB

=>ED là đường trung bình của ΔCAB

=>ED//AB và \(ED=\dfrac{AB}{2}\)

Ta có: ED//AB

AB\(\perp\)AC

Do đó: ED\(\perp\)AC tại E

=>CA\(\perp\)FD tại E

Xét ΔCFD vuông tại C có CE là đường cao

nên \(FE\cdot FD=CF^2\left(1\right)\)

Xét ΔCFB vuông tại C có CH là đường cao

nên \(FH\cdot FB=FC^2\left(2\right)\)

Từ (1) và (2) suy ra \(FE\cdot FD=FH\cdot FB\)

b: Xét tứ giác AHCB có

\(\widehat{CHB}=\widehat{CAB}=90^0\)

=>AHCB là tứ giác nội tiếp đường tròn đường kính BC

=>\(\widehat{HCA}=\widehat{HBA}\)

=>\(\widehat{ABH}=\widehat{ECH}\)

Xét ΔCHB vuông tại H và ΔFCB vuông tại C có

\(\widehat{CBH}\) chung

Do đó: ΔCHB đồng dạng với ΔFCB

=>\(\dfrac{HB}{CB}=\dfrac{HC}{FC}\)

=>\(\dfrac{HB}{HC}=\dfrac{CB}{FC}\left(1\right)\)

Xét ΔABC vuông tại A và ΔECF vuông tại E có

\(\widehat{ACB}=\widehat{EFC}\left(=90^0-\widehat{CDF}\right)\)

Do đó: ΔABC đồng dạng với ΔECF

=>\(\dfrac{AB}{CE}=\dfrac{BC}{CF}\)(2)

Từ (1) và (2) suy ra \(\dfrac{HB}{HC}=\dfrac{AB}{CE}\)

Xét ΔABH và ΔECH có

\(\dfrac{HB}{HC}=\dfrac{AB}{CE}\)

\(\widehat{HBA}=\widehat{HCE}\)

Do đó: ΔABH đồng dạng với ΔECH

18 tháng 10 2021

b: Xét ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

5 tháng 11 2018

Câu hỏi của Hai Nguyen Lam - Toán lớp 9 - Học toán với OnlineMath Bạn  tham  khảo bài làm ở link này nhé!

1 tháng 7 2021

A B C M N O S D H E F K P Q I J

a) Ta thấy \(\widehat{AMN}=\widehat{ABH}+\frac{1}{2}\widehat{BHQ}=\widehat{ACH}+\frac{1}{2}\widehat{CHP}=\widehat{ANM}\). Suy ra \(\Delta AMN\) cân tại A.

b) Dễ thấy tứ giác BEFC và BQPC nội tiếp, suy ra \(\widehat{HEF}=\widehat{HCB}=\widehat{HPQ}\), suy ra EF || PQ

Hiển nhiên \(OA\perp PQ\). Do đó \(OA\perp EF.\)

c) Gọi MK cắt BH tại I, NK cắt CH tại J, HK cắt BC tại S.

Vì A,K là trung điểm hai cung MN của (AMN) nên AK là đường kính của (AMN)

Suy ra \(MK\perp AB,NK\perp AC\)hay MK || CH, NK || BH

Ta có \(\Delta BHQ~\Delta CHP\), theo định lí đường phân giác và Thales thì:

\(\frac{IH}{IB}=\frac{MQ}{MB}=\frac{NP}{NC}=\frac{JH}{JC}\). Suy ra IJ || BC

Cũng từ MK || CH, NK || BH suy ra HIKJ là hình bình hành hay HK chia đôi IJ

Do vậy HK chia đôi BC theo bổ đề hình thang. Vậy HK đi qua S cố định.

23 tháng 10 2023

Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>HD=AE và HE=AD

Xét ΔHAB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\)

=>\(AD=\dfrac{AH^2}{AB}\)

Xét ΔHAC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\)

=>\(AE=\dfrac{AH^2}{AC}\)

AI vuông góc ED

=>\(\widehat{AED}+\widehat{IAC}=90^0\)

=>\(\widehat{IAC}+\widehat{AHD}=90^0\)

=>\(\widehat{IAC}+\widehat{B}=90^0\)

mà \(\widehat{ICA}+\widehat{B}=90^0\)

nên \(\widehat{IAC}=\widehat{ICA}\)

=>IA=IC

\(\widehat{IAC}=\widehat{ICA}\)

\(\widehat{IAC}+\widehat{IAB}=90^0\)

\(\widehat{ICA}+\widehat{IBA}=90^0\)

Do đó: \(\widehat{IAB}=\widehat{IBA}\)

=>IA=IB

mà IA=IC

nên IB=IC

=>I là trung điểm của BC

\(2S=2\cdot\dfrac{1}{2}\cdot AB\cdot AC=AB\cdot AC\)

\(\dfrac{AH^4}{HE\cdot HD}=\dfrac{AH^4}{AE\cdot AD}\)

\(=\dfrac{AH^4}{\dfrac{AH^2}{AB}\cdot\dfrac{AH^2}{AC}}=AB\cdot AC\)

Do đó: \(2\cdot S=\dfrac{AH^4}{HE\cdot HD}\)

23 tháng 10 2023

Cho em hỏi lí do của ba cái này là gì ạ? Em đọc không hiểu khocroi

loading...