Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5.
a) Xét \(\Delta ABH\) và \(\Delta ACH\) có :
AB = AC ( do \(\Delta ABC\) cân tại A )
AH : cạnh chung
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
do đó \(\Delta ABH=\Delta ACH\left(c.g.c\right)\)
\(\Rightarrow\) HB = HC ( 2 cạnh tương ứng )
b) Có HB = HC ( chứng minh trên )
\(\Rightarrow\) HB + HC = BC
HB + HC = 8cm
2HB = 8cm
\(\Rightarrow\) HB = 4cm
Áp dụng định lý Pytago cho \(\Delta AHB\) có \(\widehat{AHB}=90^o\)
\(AB^2=BH^2+AH^2\)
\(5^2=4^2+AH^2\)
25 = 16 + \(AH^2\)
\(AH^2\) = 25 - 16
\(AH^2\) = 9
\(\rightarrow AH=3cm\)
c) Xét \(\Delta BDH\) và \(\Delta ECH\) có :
\(\widehat{B}=\widehat{C}\) ( do \(\Delta ABC\) cân tại A )
\(\widehat{BDH}=\widehat{CEH}\left(=90^o\right)\)
BH = HC ( chứng minh câu a )
do đó \(\Delta BDH=\Delta ECH\) ( cạnh huyền góc nhọn )
\(\Rightarrow\) HD = HE ( 2 cạnh tương ứng )
nên \(\Delta HDE\) cân tại H ( dấu hiệu nhận biết \(\Delta\) cân )
P/s : lúc nào rảnh làm tiếp nhé bây h muộn r , lm đại 1 bài dễ nhất trc ( xử lí lũ kia sau ) .
a) Vì \(BD\perp BC\left(gt\right)\)
=> \(\widehat{DBC}=90^0.\)
Hay \(\widehat{DBH}=90^0.\)
Xét 2 \(\Delta\) vuông \(AHB\) và \(DBH\) có:
\(\widehat{AHB}=\widehat{DBH}=90^0\left(gt\right)\)
\(AH=BD\left(gt\right)\)
Cạnh HB chung
=> \(\Delta AHB=\Delta DBH\) (cạnh huyền - cạnh góc vuông).
b) Theo câu a) ta có \(\Delta AHB=\Delta DBH.\)
=> \(\widehat{ABH}=\widehat{DHB}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AB\) // \(DH.\)
Chúc bạn học tốt!