Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
ban tinh AM=\(\frac{\sqrt{41}}{2}\) ;\(AB^2+AC^2=41\)
tinh ra AH=\(\frac{20\sqrt{41}}{41}\)
theo he thuc luong trong tam giac vuong
suy ra \(AB\cdot AC=20\)
\(AB=\frac{20}{AC}\)
thay vao AB^2+AC^2=41
ta co
\(\frac{400}{AC^2}+AC^2=41\)<=> AC=4
AB=5
do AB;AC binh dang nen AB=4; BC=5
vay (AB;AC)=(4;5);(5:4)
\(\frac{AH}{AM}=\frac{40}{41}\)
=>\(\frac{AH}{40}=\frac{AM}{41}=k\)
=>\(AH=40k\)
\(AM=41k\)
Tam giác ABC vuông tại A, AM là đường trung tuyến
=> \(AM=MC=\frac{BC}{2}=\frac{\sqrt{41}}{2}\)
=> 41k=\(\frac{\sqrt{41}}{2}\)=> k=\(\frac{\sqrt{41}}{82}\)
AH=40k=\(\frac{\sqrt{41}}{82}.40=\frac{20\sqrt{41}}{41}\)
Áp dụng định lí Pytago vào tam giác ABH ta có:
\(HM=\sqrt{AM^2-AH^2}=\sqrt{\left(\frac{\sqrt{41}}{2}\right)^2-\left(\frac{20\sqrt{41}}{41}\right)^2}=\frac{9\sqrt{41}}{82}\)
HC =HM+MC=\(\frac{\sqrt{41}}{2}+\frac{9\sqrt{41}}{82}=\frac{25\sqrt{41}}{41}\)
HB=BC-HC=\(\frac{16\sqrt{41}}{41}\)
Áp dụng định lí Pytago ta sẽ tính được
AC=5
AB=4
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C
a) Vì \(\widehat{B}=\alpha\); \(\tan\alpha=\frac{5}{12}\)
\(\Rightarrow\frac{AC}{AB}=\frac{5}{12}\)
mà \(AB=8\)\(\Rightarrow\frac{AC}{8}=\frac{5}{12}\)
\(\Rightarrow AC=\frac{8.5}{12}=\frac{10}{3}\)
Vậy \(AC=\frac{10}{3}\)
b) Vì \(\Delta ABC\)vuông tại A nên áp dung định lý Pytago ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow8^2+\left(\frac{10}{3}\right)^2=BC^2\)
\(\Rightarrow BC^2=\frac{676}{9}\)\(\Rightarrow BC=\frac{26}{3}\)
Vậy \(BC=\frac{26}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C H K D
Ta có
\(BC=4.BH\Rightarrow BH=\frac{BC}{4}\) (1)
\(S_{BHD}=\frac{1}{2}.BD.BH.sin\widehat{KBC}\) (*)
Xét tg vuông ABC có
\(AB^2=BH.BC\) (Trong 1 tg vuông bình phương 1 cạnh gó vuông bằng tích của hình chiếu của nó trên cạnh huyền với cạnh huyền)
\(\Rightarrow AB^2=\frac{BC}{4}.BC=\frac{BC^2}{4}\Rightarrow AB=\frac{BC}{2}\)
Xét tg vuông ABD có
\(\cos\widehat{ABD}=\frac{BD}{AB}\Rightarrow BD=AB.\cos\widehat{ABD}=\frac{BC.\cos\widehat{ABD}}{2}\) (2)
Thay (1) và (2) vào (*)
\(\Rightarrow S_{BHD}=\frac{1}{2}.\frac{BC.\cos\widehat{ABD}}{2}.\frac{BC}{4}.\sin\widehat{KBC}\) (**)
Xét tg BKC có
\(S_{BKC}=\frac{1}{2}.BK.BC.\sin\widehat{KBC\Rightarrow BC.\sin\widehat{KBC}=\frac{2.S_{BKC}}{BK}}\) (***)
Xét tg vuông ABK có
\(AB^2=BD.BK\Rightarrow BK=\frac{AB^2}{BD}=\frac{\frac{BC^2}{4}}{\frac{BC.\cos\widehat{ABD}}{2}}=\frac{BC}{2.\cos\widehat{ABD}}\) Thay giá trị của BK vào(***) ta có
\(BC.\sin\widehat{KBC}=\frac{2.S_{BKC}}{\frac{BC}{2.\cos\widehat{ABD}}}=\frac{4.S_{BKC}.\cos\widehat{ABD}}{BC}\) (3)
Thay (3) vào (**) ta có
\(\Rightarrow S_{BHD}=\frac{1}{2}.\frac{BC.\cos\widehat{ABD}}{2}.\frac{4.S_{BKC}.\cos\widehat{ABD}}{4.BC}=\frac{1}{4}.S_{BKC}.\cos^2\widehat{ABD}\) (dpcm)