Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)(ĐL tổng 3 góc 1 \(\Delta\))
\(\Rightarrow30^o+70^o+\widehat{C}=180^o\) (Vì \(\widehat{A}=30^o;\widehat{B}=70^o\) (gt))
\(\Rightarrow\widehat{C}=180^o-30^o-70^o=80^o\)
Bài 2:
Xét \(\Delta ABC\) (vuông tại A) có:
\(\widehat{B}+\widehat{C}=90^o\) (Tc \(\Delta\) vuông)
\(\Rightarrow\widehat{B}+40^o=90^o\) (Vì \(\widehat{C}=40^o\) (gt))
\(\Rightarrow\widehat{B}=90^o-40^o=50^o\)
Giải:
+) Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) ( 3 góc của tam giác )
\(\Rightarrow30^o+70^o+\widehat{C}=180^o\)
\(\Rightarrow\widehat{C}=80^o\)
Vậy...
+) Ta có: \(\widehat{B}+\widehat{C}=90^o\) ( do tam giác có \(\widehat{A}=90^o\) )
\(\Rightarrow40^o+\widehat{B}=90^o\)
\(\Rightarrow\widehat{B}=50^o\)
Vậy...
\(\Delta ABC\)cân ở B, \(\widehat{ABC}=80^0\)nên \(\widehat{BAC}=\widehat{BCA}=50^0\)
Vì \(\widehat{IAC}=20^0,\widehat{ICA}=30^0\)nên \(\widehat{IAB}=40^0,\widehat{ICB}=20^0\)
B A C K I
Kẻ tia phân giác của \(\widehat{BAI}\)cắt tia CI ở K,ta có \(\widehat{BAK}=\widehat{KAI}=20^0\)
=> \(\widehat{KAC}=30^0=\widehat{KCA}\).Tam giác KAC cân tại ở K nên KA = KC
Xét \(\Delta AKB\)và \(\Delta CKB\)có :
AK = CK(gt)
AB = CB(gt)
KB cạnh chung
=> \(\Delta AKB=\Delta CKB\left(c-c-c\right)\)
=> \(\widehat{AKB}=\widehat{BKC}\)
Và \(\widehat{KBA}=\widehat{KBC}=40^0\)
Lại có : \(\widehat{KCB}=20^0\),vì thế \(\widehat{CKB}=120^0=\widehat{AKB}\)
Tam giác cân AKC có hai góc ở đáy bằng nhau và bằng 300 nên góc ở đỉnh \(\widehat{AKC}=120^0\)
\(\Delta AKB=\Delta AKI\left(g-c-g\right)\)nên góc ở đỉnh \(\widehat{BAI}=40^0\)
Do đó \(\widehat{AIB}=70^0\)
Đáp án:
ΔAMB: ∠B = 70o70o; ∠AMB = 90o90o; ∠BAM = 20o20o
ΔAMC: ∠C = 70o70o; ∠AMC = 90o90o; ∠CAM = 20o20o
Giải thích các bước giải:
ΔABC có AB = AC ⇔ ΔABC cân tại A ⇔ ∠B = ∠C
Mà ∠BAC = 40o40o ⇒ ∠B + ∠C = 140o140o
⇒ ∠B = ∠C = 70o70o
Xét ΔAMB và ΔAMC có:
AB = AC (gt)
AM: cạnh chung
MB = MC (M là trung điểm của BC)
⇒ ΔAMB = ΔAMC (c.c.c)
⇒ ∠AMB = ∠AMC (2 góc tương ứng)
∠BAM = ∠CAM (2 góc tương ứng)
Lại có: ∠AMB + ∠AMC = 180o180o (2 góc kề bù)
⇒ ∠AMB = ∠AMC = 180o2180o2 = 90o90o
∠BAM + ∠CAM = ∠BAC = 40o40o
⇒ ∠BAM = ∠CAM = 40o240o2 = 20o20o
Tam giác ABC là tam giác tù vì có 1 góc A tù.
Áp dụng định lý tổng ba góc trong tam giác ABC ta có:
Suy ra ∆ABC cân tại A.