Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C H M F E I K
, M là trung điểm của BC ⇒ MB = MC
Xét ΔMBA và ΔMCE có:
MB = MC
\(\widehat{AMB}=\widehat{EMC}\)(đối đỉnh)
MA = ME
=> ΔMBA = ΔMCE (c.g.c) (đpcm)
b, Xét 2 tam giác vuông ΔBHA và ΔBHF có:
BH chung; \(\widehat{ABH}=\widehat{FBH}\) (do góc ABx nhận BC là tia phân giác)
=> ΔBHA = ΔBHF (cạnh góc vuông - góc nhọn)
=> AB = BF mà AB = CE (do ΔMBA = ΔMCE)
=> CE = BF (đpcm)
c, Ta thấy: \(\widehat{FBC}=\widehat{ABC}=\widehat{ECB}\)
=> ΔKBC cân tại K mà KM là trung tuyến
=> KM là phân giác của \(\widehat{BKC}\) (1)
ΔKBC cân tại K ⇒ KB = KC mà BF = CE
⇒ KB - BF = KC - CE ⇒ KF = KE
Ta chứng minh được ΔBEK = ΔCFK (c.g.c)
=> \(\widehat{EBK}=\widehat{FCK}\)
=.> ΔBIF = ΔCIE (g.c.g)
=> IF = IE ⇒ ΔIFK = ΔIEK (c.c.c)
\(\Rightarrow\widehat{IKF}=\widehat{IKF}\)
⇒ KI là phân giác của ^BKC (2)
Từ (1) và (2) suy ra M, I, K thẳng hàng (đpcm)

a) ta thấy góc xBC = góc ADB ( cặp góc đồng vị) (1)
Mà bx là tia phân giác của góc ABC nên góc ABM = góc MBC
Suy ra MBA = góc BAD ( so le trong ) (2)
Từ (1) và (2) suy ra góc DAB = góc BDA
b/ có chưa C là sao tui ko hiểu

Bài 1:
a) Ta có: góc xDc = góc ACB ( 2 góc so le trong và Dx // BC)
Mà góc xDc = 70 độ (gt)
Nên góc ACB = 70 độ
b) Ta có:
góc BAD + góc BAC = 180 độ do 2 góc kề bù
góc BAD = 180 độ - 40 độ = 140 độ
Mà góc BAy = 1/2 góc BAD do Ay là tia phân giác của góc BAD
Nên góc BAy = 1/2 .140 độ = 70 độ (1)
Xét tam giác ABC dựa vào ĐL tổng ba góc trong tam giác ta có:
góc ABC = 180 độ - góc BAC - góc ACB = 180 độ - 40 độ - 70 độ = 70 độ (2)
Từ (1) và (2) suy ra góc BAy = góc ABC
Mà 2 góc này nằm ở vị trí so le trong
Nên Ay // BC.
Bài 2:
a) Ta có: góc ABM = góc BMN ( 2 gcó o le trong và AB // NM)
Mà góc ABM = góc xBC ( Bx là tia phân giác của góc ABC)
Nên góc xBC = góc BMN.
b) Ta có: góc MNy = góc BMN ( 2 góc so le trong và Bx // Ny)
Mà góc xBC = góc BMN ( chứng minh câu a)
Nên góc xBC = góc MNy
Mặt khác góc xBC = góc CNy ( 2 góc đồng vị và Bx // Ny)
=.> góc MNy = góc CNy
=> Ny là tia phân giác của góc MNC
Bài giải :
Bài 1:
a) Ta có: góc xDc = góc ACB ( 2 góc so le trong và Dx // BC)
Mà góc xDc = 70 độ (gt)
Nên góc ACB = 70 độ
b) Ta có:
góc BAD + góc BAC = 180 độ do 2 góc kề bù
góc BAD = 180 độ - 40 độ = 140 độ
Mà góc BAy = 1/2 góc BAD do Ay là tia phân giác của góc BAD
Nên góc BAy = 1/2 .140 độ = 70 độ (1)
Xét tam giác ABC dựa vào ĐL tổng ba góc trong tam giác ta có:
góc ABC = 180 độ - góc BAC - góc ACB = 180 độ - 40 độ - 70 độ = 70 độ (2)
Từ (1) và (2) suy ra góc BAy = góc ABC
Mà 2 góc này nằm ở vị trí so le trong
Nên Ay // BC.
Bài 2:
a) Ta có: góc ABM = góc BMN ( 2 gcó o le trong và AB // NM)
Mà góc ABM = góc xBC ( Bx là tia phân giác của góc ABC)
Nên góc xBC = góc BMN.
b) Ta có: góc MNy = góc BMN ( 2 góc so le trong và Bx // Ny)
Mà góc xBC = góc BMN ( chứng minh câu a)
Nên góc xBC = góc MNy
Mặt khác góc xBC = góc CNy ( 2 góc đồng vị và Bx // Ny)
=.> góc MNy = góc CNy
=> Ny là tia phân giác của góc MNC
Xét ΔBIA vuông tại I và ΔBID vuông tại I có
BI chung
\(\hat{IBA}=\hat{IBD}\)
Do đó: ΔBIA=ΔBID
=>IA=ID và BA=BD
Xét ΔIMD vuông tại I và ΔIBA vuông tại I có
ID=IA
\(\hat{IDM}=\hat{IAB}\) (hai góc so le trong, DM//AB)
Do đó: ΔIMD=ΔIBA
=>IM=IB
Xét ΔIBD vuông tại I và ΔIMA vuông tại I có
IB=IM
ID=IA
Do đó: ΔIBD=ΔIMA
=>\(\hat{IBD}=\hat{IMA}\)
mà hai góc này là hai góc ở vị trí so le trong
nên BD//MA