Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
xét tam giác ABC vuông tại A . áp dụng Pytago
=>\(BC=\sqrt{AB^2+AC^2}\)
\(BC=\sqrt{3^2+4^2}=5cm\)
có \(AC^2=CH.BC\)(hệ thức lượng)
\(=>CH=\dfrac{AC^2}{BC}=\dfrac{4^2}{5}=3,2cm\)
có tam giác AHC vuông tại H
=>\(AH=\sqrt{AC^2-CH^2}=\sqrt{4^2-3,2^2}=2,4cm\)
=>\(S\left(\Delta AHC\right)=\dfrac{AH.HC}{2}=\dfrac{ }{ }\)\(\dfrac{2,4.3,2}{2}=3,84cm^2\)
xét tam giác ABC vuông tại A đường cao AH , áp dụng đinh lí Pytago ta có
\(AB^2+AC^2=BC^2< =>BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5cm\)
ta có: \(AH.BC=AB.AC\)(hệ thức lượng tam giác vuông)
=>
\(AH=\dfrac{AB.AC}{BC}=\dfrac{3.4}{5}=\dfrac{12}{5}=2,4cm\)
Ta có DB/AB = DC/AC =>3/AB=4/AC => 4AB=3AC => AB=3/4 AC
ta lại có BC=3+4=7 cm
tam giác ABC vuông tại A, theo định lí pitago, ta có BC^2 = AB^2 + AC^2
=> 49= 9/16AC^2 + AC^2 => AC=28/5 => AB=21/5
Áp dụng định lí Pitago vào tam giác vuông ABC ta có :
B C 2 = A B 2 + A C 2 = 3 2 + 4 2 = 25
Suy ra : BC = 5 (cm)
Theo tính chất hai tiếp tuyến giao nhau ta có:
AD = AE
BD = BF
CE = CF
Mà: AD = AB – BD
AE = AC – CF
Suy ra: AD + AE = AB – BD + (AC – CF)
= AB + AC – (BD + CF)
= AB + AC – (BF + CF)
= AB + AC – BC
Suy ra:
xét △ABC vuông tại A
BC2= AB2+ AC2
BC2= 32+ 42
BC2= 25
BC=\(\sqrt{25}=5\)
Xét △ABC vuông tại A, có AH là đường cao
AB.AC=AH.BC
3.4=AH.5
AH= \(\dfrac{3.4}{5}=2,4\)
Xét △ ABC vuông tại A
AB2= BH.BC
32= BH. 5
BH= 1,8
tham khảo ở đây
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-vuong-tai-a-duong-cao-ah-biet-ab-3cm-ac-4cm-tinh-do-dai-cac-canh-bc-ah-va-so-do-goc-acb-lam-tron-den-do.1482642245232
tính BH
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại ta có
AB2=BC.BH \(\Leftrightarrow\) BH=AB2/BC \(\Leftrightarrow\) BH=9/5
\(HC=\dfrac{3^2}{4}=2.25\left(cm\right)\)
BC=HB+HC=6,25(cm)
AM=BC/2=3,125(cm)
\(AB=\sqrt{4\cdot6.25}=5\left(cm\right)\)
\(AC=\sqrt{6.25^2-5^2}=3.75\left(cm\right)\)
+ ) áp dụng định lí Pytago trong tam giác vuông \(ABH\) vuông tại \(H\) , ta có :
\(AB^2=AH^2+HB^2=3^2+4^2=25\Rightarrow AB=5\left(cm\right)\)
+ ) áp dụng hệ thức về cạnh và đường cao trong tam giác vuông \(ABC\) với \(AH\) là đường cao , ta có :
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{AH^2}-\dfrac{1}{AB^2}\)
\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{3^2}-\dfrac{1}{5^2}=\dfrac{16}{225}\)
\(\Rightarrow AC=\dfrac{15}{4}\left(cm\right)\)
+ ) áp dụng định lí Pytago trong tam giác vuông \(ABC\) vuông tại \(A\) , ta có :
\(BC^2=AB^2+AC^2=5^2+\left(\dfrac{15}{4}\right)^2=\dfrac{625}{16}\)
\(\Rightarrow BC=\dfrac{25}{4}\left(cm\right)\)
+ ) tam giác \(ABC\) vuông tại \(A\) có trung tuyến \(AM\) nên ta có :
\(AM=\dfrac{1}{2}BC=\dfrac{25}{8}\left(cm\right)\)
a) tứ giác ADOE là hình vuông
vì \(\left\{{}\begin{matrix}DAE=90\left(giảthiết\right)\\ODA=90\left(DlàtiếpđiểmcủađườngtrònvớiAB\right)\\OEA=90\left(Elàtiếpđiểmcủađườngtròn\:vớiAC\right)\end{matrix}\right.\)
và OD = OE = R
Xét ΔABC vuông tại A áp dụng định lý Py-ta-go ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC^2=3^2+4^2\)
\(\Rightarrow BC^2=9+16\)
\(\Rightarrow BC^2=25\)
\(\Rightarrow BC=\sqrt{25}\)
\(\Rightarrow BC=5\left(cm\right)\)