K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có 

M là trung điểm của AC

N là trung điểm của AB

Do đó: MN là đường trung bình của ΔABC

Suy ra: \(MN=\dfrac{BC}{2}=5\left(cm\right)\)

b: Xét ΔAMB và ΔCMD có

MA=MC

góc AMB=góc CMD

MB=MD

=>ΔAMB=ΔCMD

c: G là trọng tâm

=>BG=2/3BM=2/3*1/2*BD=1/3*BD

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với...
Đọc tiếp

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.

Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. Cmr I là trung điểm của DE.

Bài 3:Cho tam giác ABC đều. Gọi M, N là các điểm trên AB, BC sao cho BM=BN. Gọi G là trọng tâm của tam giác BMN. I là trung điểm của AN, P là trung điểm của MN.Cmr:

a, tam giác GPI và tam giác GNC đồng dạng.

b, IC vuông góc với GI.

Bài 4:Cho tam giác ABC vuông tại A, đường cao AH. I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ là đường thẳng chứa AC, vẽ Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với BI theo thứ tự G và K. Cmr:

a,Tam giác IHE và tam giác BHA đồng dạng.

b, Tam giác BHI và tam giác AHE đồng dạng.

c, AE vuông góc với BI.

LÀM ƠN HÃY GIÚP MÌNH NHA. MÌNH ĐANG RẤT VỘI. THANK KIU CÁC BẠN!!!😘😘😘

 

0
10 tháng 7 2016

.k cho tớ cái

a: O là giao điểm của 3 đường trung trực của ΔABC

=>O là tâm đường tròn ngoại tiếp ΔABC

=>AM là đường kính của (O)

Xét (O) có

ΔABM nội tiếp đường tròn

AM là đường kính

=>ΔABM vuông tại B

=>BM vuông góc AB

=>BM//CH

Xét (O) có

ΔACM nội tiếp

AM là đường kính

=>ΔAMC vuông tại C

=>AC vuông góc CM

=>CM//BH

Xét tứ giác BHCM có

BH//CM

BM//CH

=>BHCM là hình bình hành

=>BC cắt HM tại trung điểm của mỗi đường

=>I là trung điểm của HM

b: Xét ΔMAH có

O,I lần lượt là trung điểm của MA,MH

=>OI là đường trung bình

=>OI//AH và OI=1/2AH

=>AH=2OI

a: ta có: GN và GQ là hai tia đối nhau

=>G nằm giữa N và Q

mà GN=GQ

nên G là trung điểm của NQ

Ta có: GP và GM là hai tia đối nhau

=>G nằm giữa P và M

mà GP=GM

nên G là trung điểm của PM

Xét tứ giác MNPQ có

G là trung điểm chung của MP và NQ

=>MNPQ là hình bình hành

b: Ta có: ΔABC cân tại A

=>AB=AC(1)

Ta có: M là trung điểm của AC

=>\(AM=CM=\dfrac{AC}{2}\left(2\right)\)

Ta có: N là trung điểm của AB

=>\(AN=BN=\dfrac{AB}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra AM=CM=AN=BN

Xét ΔAMB và ΔANC có

AM=AN

\(\widehat{BAM}\) chung

AB=AC

Do đó: ΔAMB=ΔANC

=>BM=CN

Xét ΔABC có

BM,CN là các đường trung tuyến

BM cắt CN tại G

Do đó: G là trọng tâm của ΔABC

=>\(MG=\dfrac{1}{3}BM;NG=\dfrac{1}{3}CN\)

mà BM=CN

nên MG=NG

G là trung điểm của QN

nên QN=2NG

G là trung điểm của MP

nên MP=2MQ

Ta có: MG=NG

mà QN=2NG và MP=2MQ

nên QN=MP

Hình bình hành MNPQ có NQ=MP

nên MNPQ là hình chữ nhật