Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
“““““` ✬ ‘✧ ‘✬
““““` __♜_♜_♜__
“““` `{,,,,,,,,,,,,,,,,,,,,,}
‘“` ✩`{✫//✰//✰//✫}` ✩
‘“` ♖_{♖___♖__♖___.♖}_♖
“` {///////////////}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“{//////////////////}
“{_✿__❀_♥_✿_♥_❀__✿_}
““““ * ` ` * ` ` *
‘““““ 0 ` ` 0 ` ` 0
““““ ||___||___||
““ * ` {,,,,,,,,,,,,,,,,,,,} ` *
““ 0 ` {////////} ` 0
‘“`_||_{_______”_____}_||_
“`{///////////////}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“`{///////////////}
“`{_____________”________}
1) Ta có: BH vuông góc với AC
CK vuông góc với AC
=> BH//CK
Chứng minh tương tự ta có: CH//Bk
Xét tứ giác BHCK có: BH//CK
CH//BK
=> Tứ giác BHCK là hbh
Có M là trung điểm của BC=> M là trung điểm của HK=>M,H,K thẳng hàng
2.gọi HI cắt BC tại J
Xét tam giác HIK có: J là trung điểm của HI
M là trung điểm của HK
=> JM là đường trung bình trong tam giác HIK
=> IK//MJ hay IK//BC
Xét tam giác BHJ và tam giác BIJ có;
HJ=JI
góc BJH=góc BJI=90
BJ chung
=> Tam giác BHJ = tam giác BIJ
=> Góc HBJ= góc IBJ
Mà góc HBJ= góc BCK( do BH//CK)
Xét tứ giác BIKC có:
KI//BC
góc IBC= góc KCB
=>Tứ giác BIKC là hình thang cân
3.Xét tứ giác GHCK có: GK//HC (doBK//HC)
=> Tứ giác GHCK là hình thang
Để GHCK là hình thang cân<=>góc GHC= góc KCH(1)
mà GHC+HCB=90
KCH+HCA=90
=> (1)<=> góc HCB=góc HCA=> CH là phân giác của góc ACB
Xét tam giác ABC có : CH là phân giác của góc ACB
CH là đường cao trong tam giác ABC
=> Tam giác ABC cân tại C
Vậy tứ giác GHCK là hình thang cân<=> Tam giác ABC cân tại C
1) Ta có: BH vuông góc với AC
CK vuông góc với AC
=> BH//CK
Chứng minh tương tự ta có: CH//Bk
Xét tứ giác BHCK có: BH//CK
CH//BK
=> Tứ giác BHCK là hbh
Có M là trung điểm của BC=> M là trung điểm của HK=>M,H,K thẳng hàng
2.gọi HI cắt BC tại J
Xét tam giác HIK có: J là trung điểm của HI
M là trung điểm của HK
=> JM là đường trung bình trong tam giác HIK
=> IK//MJ hay IK//BC
Xét tam giác BHJ và tam giác BIJ có;
HJ=JI
góc BJH=góc BJI=90
BJ chung
=> Tam giác BHJ = tam giác BIJ
=> Góc HBJ= góc IBJ
Mà góc HBJ= góc BCK( do BH//CK)
Xét tứ giác BIKC có:
KI//BC
góc IBC= góc KCB
=>Tứ giác BIKC là hình thang cân
3.Xét tứ giác GHCK có: GK//HC (doBK//HC)
=> Tứ giác GHCK là hình thang
Để GHCK là hình thang cân<=>góc GHC= góc KCH(1)
mà GHC+HCB=90
KCH+HCA=90
=> (1)<=> góc HCB=góc HCA=> CH là phân giác của góc ACB
Xét tam giác ABC có : CH là phân giác của góc ACB
CH là đường cao trong tam giác ABC
=> Tam giác ABC cân tại C
Vậy tứ giác GHCK là hình thang cân<=> Tam giác ABC cân tại C