K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2017

A B C E F M N

Trên tia đối của BE lấy điểm M sao cho BM=AC

Trên tia đố của CF lấy điểm N sao cho CN=AB.

Ta có:       ^ABE+^BAE=^ABE+^BAC=900 (vì tam giác AEB vuông tại E)

Tương tự: ^ACF+^CAF=^ACF+^BAC=900

=> ^ABE=^ACF => 1800 - ^ABE = 1800 - ^ACF => ^MBA=^ACN

Xét \(\Delta\)BMA và \(\Delta\)CAN:

BM=AC

^MBA=^ACN   => \(\Delta\)BMA=\(\Delta\)CAN (c.g.c)

AB=CN

=> MA=AN (2 cạnh tương ứng)

Lại có: BE+AC=BA+CF (giả thiết). Thay AB=CN, AC=BM, ta được:

BE+BM=CN+CF => EM=FN

Xét \(\Delta\)AEM và \(\Delta\)AFN:

AM=AN (cmt)

^AEM=^AFN=900          => \(\Delta\)AEM=\(\Delta\)AFN (Cạnh huyền cạnh góc vuông)

EM=FN

=> ^AME=^ANF (2 góc tương ứng) hay ^AMB=^ANC (1)

Mà \(\Delta\)BMA=\(\Delta\)CAN (cmt) => ^AMB=^NAC (2)

Từ (1) và (2) => ^ANC=^NAC => \(\Delta\)ACN cân tại C => AC=CN.

Mà CN=AB => AB=AC => \(\Delta\)ABC cân tại A (đpcm). 

3 tháng 12 2018

nhanh mk k cho

7 tháng 3 2022

giúp zới TvT

 

7 tháng 3 2022

a) -Có: A∉BC, AD⊥BC tại D.

\(\Rightarrow\)AD là đường vuông góc còn AB, AC là đường xiên.

\(\Rightarrow AB>AD,AC>AD\) (quan hệ giữa đường vuông góc và đường xiên).

\(\Rightarrow AB+AC>AD+AD=2AD\)

b) -Có: B∉AC, BE⊥AC tại E.

\(\Rightarrow\)BE là đường vuông góc còn BC là đường xiên.

\(\Rightarrow BC>BE\) (quan hệ giữa đường vuông góc và đường xiên).

-Có: C∉AB, CE⊥AB tại E.

\(\Rightarrow\)CE là đường vuông góc còn BC là đường xiên.

\(\Rightarrow AC>CF\) (quan hệ giữa đường vuông góc và đường xiên).

-Có: \(AB>AD,AC>CF,BC>BE\)

\(\Rightarrow AB+AC+BC>AD+BE+CF\)

 

21 tháng 8 2019

A B C F E H AB = AC

21 tháng 8 2019

A B C E F H

\(a,\)Xét \(\Delta ABE\)và \(\Delta ACF\)có :

\(\widehat{AEB}=\widehat{ACF}\left(gt\right)\)

\(AB=AC\left(gt\right)\)

\(\widehat{A}\)chung 

\(\Rightarrow\Delta AEB=\Delta ACF\left(g.c.g\right)\)

\(\Rightarrow\widehat{ABE}=\widehat{ACF}\)( Hai góc tương ứng )

\(b,\)Ta có : \(\widehat{ABC}=\widehat{ABE}+\widehat{EBC}\)

\(\widehat{ACB}=\widehat{ACF}+\widehat{FCB}\)

Mà \(\widehat{ABC}=\widehat{ACB};\)\(\widehat{ABE}=\widehat{ACF}\left(cmt\right)\)

\(\Rightarrow\widehat{EBC}=\widehat{FCB}\)

\(\Rightarrow\Delta HBC\)cân tại H