K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2020

a) Xét ΔAHB vuông tại H và ΔDHB vuông tại D có 

BH chung

AH=DH(gt)

Do đó: ΔAHB=ΔDHB(hai cạnh góc vuông)

b) Xét ΔAMB và ΔEMC có

AM=ME(gt)

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔAMB=ΔEMC(c-g-c)

\(\widehat{BAM}=\widehat{CEM}\)(hai góc tương ứng)

mà \(\widehat{BAM}\) và \(\widehat{CEM}\) là hai góc ở vị trí so le trong

nên AB//CE(Dấu hiệu nhận biết hai đường thẳng song song)

Ta có: ΔABH=ΔDBH(cmt)

nên AB=BD(hai cạnh tương ứng)(1)

Ta có: ΔABM=ΔECM(cmt)

nên AB=CE(hai cạnh tương ứng)(2)

Từ (1) và (2) suy ra BD=CE(đpcm)

a: Xét ΔAMB và ΔEMC co

MA=ME

góc AMB=góc EMC

MB=MC

=>ΔAMB=ΔEMC

b: Xet ΔBAD có

BH vừa là đường cao, vừa là trung tuyến

nên ΔBAD cân tại B

=>BD=BA=CE

c: Xét ΔAMD có

MH vừa là đường cao, vừa là trung tuyến

nên ΔAMD cân tại M

16 tháng 12 2016


A B C D E H M

16 tháng 12 2016

Làm tiếp nha:

Xét tứ giác ABEC có 2 đường chéo AE và BC cắt nhau tại trung điểm M của mỗi đường nên ABEC là hình bình hành.

=> \(\hept{\begin{cases}AB=CE\left(1\right)\\ABllCE\end{cases}}\)

a ) xét \(\Delta ABM\)và \(\Delta ECM\)có:

\(\hept{\begin{cases}MA=ME\left(gt\right)\\MB=MC\left(gt\right)\\AB=CE\left(cmt\right)\end{cases}}\)

---> \(\Delta ABM=\Delta ECM\left(c.c.c\right)\)

b) Xét \(\Delta ABD\) có BH là đường cao đồng thời đường trung tuyến nên \(\Delta ABD\) cân tại B.

---> BC là phân giác của ABD

\(\Delta ABD\)cân tại B ---> AB = BD (2)

Từ (1),(2) ---> BD = CE

15 tháng 4 2020

ĐIểm M ở đâu vậy bạn

28 tháng 11 2021

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE

25 tháng 1 2016

hình như bài này sai đề

 

6 tháng 11 2017

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.

6 tháng 2 2016

vẽ hình nha bạn

ghi từng bài thui

\(\text{#TNam}\)

`a,` Xét Tam giác `AMB` và Tam giác `EMC` có:

`MA=ME (g``t)`

\(\widehat{AMB}=\widehat{CME} (\text {2 góc đối đỉnh})\)

`MB=MC (\text {M là trung điểm của BC})`

`=> \text {Tam giác AMB = Tam giác EMC (c-g-c)}`

`b,` Vì Tam giác `AMB =` Tam giác `EMC (a)`

`-> AB = CE (\text {2 cạnh tương ứng}) (1)`

Xét Tam giác `ABH` và Tam giác `DBH` có:

`HA = HD (g``t)`

\(\widehat{AHB}=\widehat{DHB}=90^0\)

`\text {BH chung}`

`=> \text {Tam giác ABH = Tam giác DBH (c-g-c)}`

`-> AB = BD (\text {2 cạnh tương ứng}) (2)`

Từ `(1)` và `(2) -> CE = BD.`

`c,` Xét Tam giác `AMH` và Tam giác `DMH` có:

`\text {MH chung}`

\(\widehat{AHM}=\widehat{DHM}=90^0\)

`HA = HD (g``t)`

`=> \text {Tam giác AMH = Tam giác DMH (c-g-c)}`

`-> MA = MD (\text {2 cạnh tương ứng})`

Xét Tam giác `AMD: MA = MD`

`-> \text {Tam giác AMD cân tại M}`

*Hoặc nếu như bạn có học rồi, thì mình có thể dùng cái này cũng được nè cậu:>.

Vì `MH` vừa là đường cao (hạ từ đỉnh `->` cạnh đối diện), vừa là đường trung tuyến.

Theo tính chất của tam giác cân `-> \text {Tam giác AMD là tam giác cân} (đpcm).`

loading...

a: Xét ΔAMB và ΔEMC có

MA=ME

góc AMB=góc EMC

MB=MC

=>ΔAMB=ΔEMC

b: Xét ΔBAD có

BH vừa là đường cao, vừa là trung tuyến

=>ΔBAD cân tại B

=>BD=BA=CE

c: Xét ΔMAD có

MH vừa là đường cao, vừa là trung tuyến

=>ΔMAD cân tại M

`\color {blue} \text {_Namm_}`

Mình xp sửa đề: Cho Tam giác `ABC (AB<AC)` (chứ nếu để vậy sẽ bị sai lệch thông tin của hình ;-;;)

`a,` Xét Tam giác `AMB` và Tam giác `CME` có:

`AM = EM (g``t)`

\(\widehat{AMB}=\widehat{CME}\) `(2` góc đối đỉnh `)`
`MB=MC (g``t)`

`=>` Tam giác `AMB =` Tam giác `CME (c-g-c)`

`b,` Vì Tam giác `AMB =` Tam giác `CME (a)`

`-> AB=CE (2` cạnh tương ứng `)`

Xét Tam giác `ABH` và Tam giác `DBH` có:

`HA = HD (g``t)`

\(\widehat{AHB}=\widehat{DHB}=90^0\)

`BH` chung

`=>` Tam giác `ABH =` Tam giác `DBH (c-g-c)`

`-> AB=BD (2` cạnh tương ứng `)`

Mà `AB = CE -> BD=CE`

loading...

26 tháng 3 2020
  • linhhlin

Đáp án:

 a) Xet tam giac AMB va tam giac DMC co:

AM = DM (gt) 

goc AMB = goc DMC ( vi hai goc doi dinh ) 

CM = BM( vi M la trung diem cua CB) 

=> tam giac AMB = tam giac DMC ( c-g-c ) 

=>goc MAB = goc MCD ( hai goc tuong ung ) 

Ma hai goc nay o vi tri so le trong nen CD //AB

Lai co: goc CAB = 90 do => goc ACB = 90 do

=> CD vuông góc AC(dpcm ) 

26 tháng 3 2020

Đáp án:

 a) Xet tam giac AMB va tam giac DMC co:

AM = DM (gt) 

goc AMB = goc DMC ( vi hai goc doi dinh ) 

CM = BM( vi M la trung diem cua CB) 

=> tam giac AMB = tam giac DMC ( c-g-c ) 

=>goc MAB = goc MCD ( hai goc tuong ung ) 

Ma hai goc nay o vi tri so le trong nen CD //AB

Lai co: goc CAB = 90 do => goc ACB = 90 do

=> CD vuông góc AC(dpcm ) 

  Chúc bạn học tốt !