K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

Do đó: ΔAHB=ΔAHC

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)

hay AH là tia phân giác của góc BAC

b: \(\widehat{BAC}=70^0\)

nên \(\widehat{BAH}=35^0\)

=>\(\widehat{B}=55^0\)

=>BH<AH

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: AD=AE

hay ΔADE cân tại A

23 tháng 4 2016

a. xét tg ABH và tg ACH vuông tại H có 

AB=AC (tg ABC cân tại A)

góc B = góc C (tg ABC cân tại A)

suy ra tg ABH = tg ACH (cạnh huyền-góc nhọn)

=> BH=HC (2 cạnh tương ứng)

b. ta có BC= BH + HC

mà BH=BC => BC/2=6/2=BH=HC=3(cm)

áp dụng định lí Pytago ta có

AB2= AH2 + BH2

=> AH2= AB- BH2 =52 - 32= 25 - 9 = 16

=> AH= căn 16 = 4(cm)

c. AH là 1 đường phân giác vì BH=HC 

vì AH là 1 đoạn thẳng mà G thuộc AH (trọng tâm của tg là điểm mà 3 đường phân giác cắt nhau)

nên A,H,G thẳng hàng

d. xét tg GBH và tg GCH vuông tại H có

HB=HC (cm ở câu a)

GH là cạnh chung

vậy tg GBH = tg GCH (2 cạnh góc vuông)

=> góc GBH= góc GCH (2 góc tương ứng)

ta có:

góc B= góc GBH+ góc ABG

góc C= góc GCH+ góc ACG

mà góc B = góc C(tg ABC cân tại A)

      góc GBH= góc GCH (tg GBH = tg GCH)

nên góc ABG= góc ACG

19 tháng 2 2021

helep me 

 

19 tháng 2 2021

giúp cho mik với 

 

24 tháng 2 2022

a+b, CH có rồi mà bạn 

Có AH vuông BC (gt) => tam giác AHC vuông tại H

Theo định lí Pytago tam giác AHC vuông tại H

\(AC=\sqrt{AH^2+HC^2}=10cm\)

24 tháng 2 2022

Xét tam giác AHC: AH vuông góc BC (gt).

\(\Rightarrow\) Tam giác AHC vuông tại H.

Xét tam giác ABC cân tại A:

AH là đường cao (AH vuông góc BC).

\(\Rightarrow\) AH là trung tuyến (Tính chất tam giác cân).

\(\Rightarrow\) H là trung điểm của BC.

\(\Rightarrow\) \(BH=HC=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right).\)

Xét tam giác AHC vuông tại H:

\(AH^2+HC^2=AC^2\left(Pytago\right).\)

\(\Rightarrow\sqrt{75}^2+6^2=AC^2.\Leftrightarrow AC^2=111.\\ \Rightarrow AC=\sqrt[]{111}\left(cm\right).\)

a: Ta có: ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AH^2=10^2-6^2=64\)

=>\(AH=\sqrt{64}=8\left(cm\right)\)

b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

=>AH là phân giác của góc BAC

c: Ta có: ΔAHB=ΔAHC

=>BH=CH

Xét ΔBMH vuông tại M và ΔCNH vuông tại N có

BH=CH

\(\widehat{B}=\widehat{C}\)

Do đó: ΔBMH=ΔCNH

d: Xét ΔABO vuông tại B và ΔACO vuông tại C có

AO chung

AB=AC

Do đó: ΔABO=ΔACO

=>OB=OC

=>ΔOBC cân tại O

17 tháng 12 2021

c: HK=9,6(cm)