K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2022

giúp zới TvT

 

7 tháng 3 2022

a) -Có: A∉BC, AD⊥BC tại D.

\(\Rightarrow\)AD là đường vuông góc còn AB, AC là đường xiên.

\(\Rightarrow AB>AD,AC>AD\) (quan hệ giữa đường vuông góc và đường xiên).

\(\Rightarrow AB+AC>AD+AD=2AD\)

b) -Có: B∉AC, BE⊥AC tại E.

\(\Rightarrow\)BE là đường vuông góc còn BC là đường xiên.

\(\Rightarrow BC>BE\) (quan hệ giữa đường vuông góc và đường xiên).

-Có: C∉AB, CE⊥AB tại E.

\(\Rightarrow\)CE là đường vuông góc còn BC là đường xiên.

\(\Rightarrow AC>CF\) (quan hệ giữa đường vuông góc và đường xiên).

-Có: \(AB>AD,AC>CF,BC>BE\)

\(\Rightarrow AB+AC+BC>AD+BE+CF\)

 

25 tháng 8 2023

mọi người giải gấp giúp em ạ

 

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE/AB=AF/AC

Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc FAE chung

Do đó: ΔAEF đồng dạng với ΔABC

=>góc AEF=góc ABC

b: Kẻ HM//AB(M thuộc AC)

HN//AC(N thuộc AB)

Xét tứ giác AMHN có

AM//HN

AN//HM

Do đó: AMHN là hình bình hành

=>AM=HN; AN=HM

ΔAHM có AH<AM+MH

=>AH<AM+AN

HN//AC

mà BH vuông góc AC

nên HB vuông góc HN

ΔHBN vuông tại H

=>HB<BN

HM//AB

CH vuông góc AB

Do đó: HC vuông góc HM

=>ΔHCM vuông tại H

=>HC<MC

AH<AM+AN

HB<BN

HC<MC

=>HA+HB+HC<AM+AN+BN+MC=AC+AB

Chứng minh tương tự, ta được:
HA+HB+HC<AB+BC và HA+HB+HC<AC+BC

=>3*(HA+HB+HC)<2(BA+BC+AC)

=>HA+HB+HC<2/3*(BA+BC+AC)

a) Ta có: \(\widehat{ABE}=\dfrac{\widehat{ABC}}{2}\)(BE là tia phân giác của \(\widehat{ABC}\))

\(\widehat{ACF}=\dfrac{\widehat{ACB}}{2}\)(CF là tia phân giác của \(\widehat{ACB}\))

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABE}=\widehat{ACF}\)

Xét ΔABE và ΔACF có 

\(\widehat{ABE}=\widehat{ACF}\)(cmt)

AB=AC(ΔABC cân tại A)

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF(g-c-g)

Suy ra: BE=CF(Hai cạnh tương ứng)

c) Xét ΔABC có 

BE là đường phân giác ứng với cạnh AC(gt)

CF là đường phân giác ứng với cạnh AB(gt)

BE cắt CF tại D(gt)

Do đó: D là tâm đường tròn nội tiếp ΔABC(Định lí ba đường phân giác)

Suy ra: D cách đều ba cạnh của tam giác ABC

hay DM=DK=DN(Đpcm)

a: Xét tứ giác AQHP có

AQ//HP

AP//HQ

=>AQHP là hình bình hành

Xet ΔAHQ và ΔHAP có

HA chung

HQ=AP

AQ=HP

=>ΔAHQ=ΔHAP

b: ΔFBC vuông tại F

mà FM là trung tuyến

nên FM=BC/2

ΔECB vuông tại E

mà EM là trung tuyến

nên EM=BC/2=FM

=>ΔMEF cân tại M

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AEF=góc ABC

30 tháng 11 2017

A B C E F M N

Trên tia đối của BE lấy điểm M sao cho BM=AC

Trên tia đố của CF lấy điểm N sao cho CN=AB.

Ta có:       ^ABE+^BAE=^ABE+^BAC=900 (vì tam giác AEB vuông tại E)

Tương tự: ^ACF+^CAF=^ACF+^BAC=900

=> ^ABE=^ACF => 1800 - ^ABE = 1800 - ^ACF => ^MBA=^ACN

Xét \(\Delta\)BMA và \(\Delta\)CAN:

BM=AC

^MBA=^ACN   => \(\Delta\)BMA=\(\Delta\)CAN (c.g.c)

AB=CN

=> MA=AN (2 cạnh tương ứng)

Lại có: BE+AC=BA+CF (giả thiết). Thay AB=CN, AC=BM, ta được:

BE+BM=CN+CF => EM=FN

Xét \(\Delta\)AEM và \(\Delta\)AFN:

AM=AN (cmt)

^AEM=^AFN=900          => \(\Delta\)AEM=\(\Delta\)AFN (Cạnh huyền cạnh góc vuông)

EM=FN

=> ^AME=^ANF (2 góc tương ứng) hay ^AMB=^ANC (1)

Mà \(\Delta\)BMA=\(\Delta\)CAN (cmt) => ^AMB=^NAC (2)

Từ (1) và (2) => ^ANC=^NAC => \(\Delta\)ACN cân tại C => AC=CN.

Mà CN=AB => AB=AC => \(\Delta\)ABC cân tại A (đpcm). 

a: Xét ΔABD và ΔACD có

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó: ΔABD=ΔACD

Suy ra: \(\widehat{ADB}=\widehat{ADC}\)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)

nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

hay AD\(\perp\)BC

b: Ta có: AE+EB=AB

AF+FC=AC

mà EB=FC

và AB=AC

nên AE=AF

Xét ΔAED và ΔAFD có 

AE=AF

\(\widehat{EAD}=\widehat{FAD}\)

AD chung

Do đó: ΔAED=ΔAFD

Suy ra: \(\widehat{EDA}=\widehat{FDA}\)

hay DA là tia phân giác của \(\widehat{EDF}\)

22 tháng 1

dm