CHO TAM GIÁC ABC VÀ MỘT ĐIỂM M TÙY Ý Ở TRONG TAM GIÁC . GỌI D,E,F LẦN LƯỢT LÀ T...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Như - Toán lớp 8 - Học toán với OnlineMath

16 tháng 9 2016


Triangle poly1: Polygon A, B, C Segment c: Segment [A, B] of Triangle poly1 Segment a: Segment [B, C] of Triangle poly1 Segment b: Segment [C, A] of Triangle poly1 Segment j: Segment [A, G] Segment k: Segment [B, H] Segment l: Segment [I, C] Segment n: Segment [H, G] Segment q: Segment [O, I] Segment r: Segment [O, G] Segment f_1: Segment [A, D] Segment g_1: Segment [O, K] Segment m: Segment [A, H] Segment p: Segment [B, G] Segment s: Segment [E, D] Segment h_1: Segment [H, O] A = (6.37, 4.19) A = (6.37, 4.19) A = (6.37, 4.19) B = (3.15, -2.53) B = (3.15, -2.53) B = (3.15, -2.53) C = (15.4, -3.36) C = (15.4, -3.36) C = (15.4, -3.36) Point F: Midpoint of c Point F: Midpoint of c Point F: Midpoint of c Point D: Midpoint of a Point D: Midpoint of a Point D: Midpoint of a Point E: Midpoint of b Point E: Midpoint of b Point E: Midpoint of b O = (10.6, -2.67) O = (10.6, -2.67) O = (10.6, -2.67) Point I: Intersection point of f, i Point I: Intersection point of f, i Point I: Intersection point of f, i Point G: Intersection point of d, g Point G: Intersection point of d, g Point G: Intersection point of d, g Point H: Intersection point of e, h Point H: Intersection point of e, h Point H: Intersection point of e, h Point K: Intersection point of j, k Point K: Intersection point of j, k Point K: Intersection point of j, k Point J: Intersection point of f_1, g_1 Point J: Intersection point of f_1, g_1 Point J: Intersection point of f_1, g_1

a) DE là đường trung bình tam giác ABC=>DE//AB và DE=\(\frac{1}{2}\)AB

DE là đường trung bình tam giác OGH=>DE//GH và DE=\(\frac{1}{2}\)GH

=> AB//GH và AB=GH => AHGB là hình bình hành => AG và BH cắt nhau tại trung điểm mỗi đường 

CM tương tự: AIGC là hình bình bình hành => AG,IC cắt nhau tại trung điểm mỗi đường 

                     IBCH là hình bình hành => IC,BH cắt nhau tại trung điểm mỗi đường

=> AG,BH,CI đồng quy.

b) K trung điểm AG => OK là trung tuyến tam giác AGO

Mà AD là trung tuyến tam giác AGO ( DG=DO do đối xứng tâm )

=> Giao điểm J của hai đường là trọng tâm tam giác AGO

=> JD =\(\frac{1}{3}\)AD

Mà AD là trung tuyến tam giác ABC

=> J là trọng tâm tam giác ABC

Vậy OK luôn đi qua điểm cố định là trọng tâm tam giác ABC.

16 tháng 9 2016

Lỡ vẽ hình bự quá rồi dán lên nhìn xấu ghê.

30 tháng 8 2018
Check inbox đi
31 tháng 8 2018

Xét tứ giác AKBM có hai đường chéo cắt nhau tại trung điểm mỗi đường (FK = FM, FA = FB) nên AKBM là hình bình hành.

Vậy thì AK song song và bằng BM.

Chứng minh tương tự thì BMCH cũng là hình bình hành, suy ra HC song song và bằng BM.

Từ đó ta có AK song song và bằng HC, hay AKHC là hình bình hành.

Vậy AH giao CK tại trung điểm mỗi đường.  (1)

Chứng minh hoàn toàn tương tự:

IC song song và bằng AM, KB cũng song song và bằng AM nên IC song song và bằng KB.

Suy ra ICBK là hình bình hành hau BI giao CK tại trung điểm mỗi đường. (2)

Từ (1) và (2), ta có AH, BI, CK đồng quy tại điểm G là trung điểm mỗi đoạn trên.

31 tháng 8 2018

Em tham khảo bài 2 tại link dưới đây nhé.

Câu hỏi của Nguyễn Chí Thành - Toán lớp 8 - Học toán với OnlineMath

11 tháng 8 2015

Kẻ IN, DM song song với BC

suy ra IN song song vs DM 

Tam giác EDM có Itrung điểm DE và IN song song vs DM

suy ra In là đương trung binh của tam giác EDM

suy ra N là trung điểm Em

ta có DM song song với BC suy ra DMCB là hình thang 

Mà góc ABC =ACB

nên DMCB là hình thang cân

suy ra  DB =MC

ta lại có DB=AE

suy ra MC =AE

suy ra AE+EN=CM+MN

vậy AN=NC

VẬY N là trung điểm AC

Tam giác ACK có N là trung điểm AC và IN song song với BC

suy ra IN là đường trung bình tam giác AKB 

suy ra I la trung điểm AK 

tứ giác ADKE có I là trung điểm DE và I trung điểm AK

nêm ADKE là hình bình hành vì có hai đường chéo cắt nhau tại trung điểm mỗi đường

 

23 tháng 1 2018

cũng được